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Overview

Cellular automata (CA) are synchronous distributed systems where
the next state of each device only depends on the current state of its
neighbors.

Their implementation on a computer is straightforward, making them
very good tools for simulation and qualitative analysis.

We re-interpret them using category theory.

We retrieve classical results on CA as special cases of general facts in
category theory.

We suggest further directions to explore.
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Cellular automata

A cellular automaton (CA) on a monoid G is a triple A = 〈A,N , d〉
where:

A is a finite alphabet;

N = {n1, . . . , nm} ⊆ G is a finite neighborhood index

d : Am → A is a finitary transition function
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Local and global behavior of CA

Let G = (G , 1G , ·) a monoid, A = 〈A,N , d〉 a CA on G

G induces on the configurations c ∈ AG a family of translations

cg = σg (c) = λh : G .c(g · h)

A induces a local behavior ΛA(c) : A
G → A by

ΛA(c) = f (c |N )

= f (c(n1), . . . , c(nm))

A induces a global behavior ΓA(c) : A
G → AG by

ΓA(c) = λg : G .f (cg |N )

= λg : G .f (c(g · n1), . . . , c(g · nm))
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Two classical results

Curtis-Lyndon-Hedlund theorem

Let f : AG → AG . The following are equivalent.

1 f is the global behavior of a CA.

2 f is continuous in the product topology and commutes with the
translations.

Reason why: compactness of AG and uniform continuity of f .

Reversibility principle

Let f be a bijective CA global behavior.

Then f −1 is also the global behavior of some CA.

Reason why: f is a homeomorphism + Curtis-Hedlund.
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Comonads

A comonad on a category C is a triple D = (D, ε, δ) where:

D is a functor from C to itself;

the counit ε : D → IdC and the comultiplication δ : D → D2 are
natural transformations;

for every A ∈ |C| the following diagrams commute:

DA
δA //

δA

��

D2A

εDA

��

DA
δA //

δA

��

D2A

δDA

��
D2A

DεA // DA D2A
DδA // D3A

Equivalently: a comonad on C is a monad on Cop.
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Why comonads?

1 Comonads provide a solution to the general problem of finding an
adjunction generating an endofunctor.

2 Comonads appear “naturally” in context-dependent computation.

3 Comonads also appear to be “natural” models for “emergent”
computation—such as CA.
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Coalgebras on a comonad
Let D = (D, ε, δ) a comonad on a category C.

A D-coalgebra is a pair (A, u), A ∈ |C|, u ∈ C(A,DA) such that the
following diagram commutes:

A

u
��

A

u
��

u // DA

Du
��

DA
εA
// A DA

δA

// D2A

Note that (DA, δA) is always a coalgebra, thanks to the comonad
laws; we call these cofree coalgebras.

A coalgebra morphism from (A, u) to (B, v) is an f ∈ C(A,B) such
that the following diagram commutes:

A
f //

u
��

B

v
��

DA
Df // DB
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Constructions on comonads

The coKleisli category coKl(D)

Objects: |coKl(D)| = |C| .
Maps: coKl(D)(A,B) = C(DA,B).
Identities: jdA = εA.

Composition: g • f = g ◦ f † where f † = Df ◦ δA.

The coEilenberg-Moore category coEM(D)

Objects: D-coalgebras.

Maps: coalgebra morphisms.

Identities and composition: same as in C.
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The Key Fact

Theorem (dual classical)

coKl(D) is equivalent to the full subcategory of coEM(D) generated by
the cofree coalgebras.

The trick is that the cofree coalgebras are final objects in coEM(D):

B A

∀u

��

∃!φ
//

∀f
oo DB

δB

��

εB

yy

DA
Dφ // D2B
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Uniform spaces

A uniform space is a set X together with a uniformity U made of
entourages U ⊆ X × X such that:

1 For every U ∈ U , ∆ = {(x , x) | x ∈ X } ⊆ U.

2 If U ⊆ V and U ∈ U then V ∈ U .

3 If U,V ∈ U then U ∩ V ∈ U .

4 If U ∈ U then U−1 ∈ U .

5 If U ∈ U then ∃V ∈ U | V 2 ⊆ U.

The richest uniformity is the discrete uniformity

D = {U ⊆ X × X | ∆ ⊆ U}
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Uniformities and topologies

Uniform spaces are “between” topological and metric spaces:

If U is a uniformity on X , then the family of the sets:

U[x ] = {y ∈ X | (x , y) ∈ U} , x ∈ X ,U ∈ U

is a basis for a topology T on X , that is, every element of T is a
union of sets of the form U[x ].

If d is a distance on X , then the family U = {Uδ}δ>0 where:

Uδ = {(x , y) ∈ X × X | d(x , y) 6 δ} = d−1 ([0, δ])

is a uniformity on X .

The discrete uniformity induces the discrete topology.
However, there exist nondiscrete uniformities which induce the discrete
topology!
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The category Unif of uniform spaces

Let (X ,U) and (Y ,V) be uniform spaces.
f : X → Y is uniformly continuous (briefly, u.c.) if it satisfies one of the
following, equivalent, conditions:

1 For every V ∈ V there exists U ∈ U such that (f × f )(U) ⊆ V .

2 (f × f )−1(V ) ∈ U for every V ∈ V.

The following are immediate:

The identity is uniformly continuous.

Composition of u.c. functions is u.c.

We denote by Unif the category of uniform spaces with u.c. functions.
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Currying back and forth

Definition in Set:

Let f : A× X → Y , f̄ : A → Y X satisfy f (a, x) = f̄ (a)(x) ∀a, x .

We call f̄ the currying of f , and f the uncurrying of f̄ .

Issues in Top:

Y X must be given a topology, call it T .

Such T must make f continuous if and only if so is f̄ .

It turns out that T is either nonexistent, or unique.

For X discrete, T is the product topology : coarsest making
projections continuous.

Issues in Unif :

Same as in Top, with uniformities in place of topologies.

If X has the discrete uniformity, then Y X may be given the product
uniformity, i.e., coarsest making evaluations u.c.
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Local behaviors on uniform spaces

Let G = (G , 1G , ·) be a uniformly discrete monoid.

Definition

A local behavior between two uniform spaces A, B is a uniformly
continuous function

k : AG → B

where AG is prodiscrete (product of discrete uniformities).

The rationale for this:

A CA local behavior k derives from a finitary function d .

Curtis-Lyndon-Hedlund: k is u.c. with A discrete and AG prodiscrete.
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Global behaviors on uniform spaces

Let G = (G , 1G , ·) be a uniformly discrete monoid.

Definition

The global behavior associated to a local behavior k : AG → B is the
uniformly continuous function k† : AG → BG defined by:

k†(c) =df λx : G .k(c B x)

where
c B x =df λy : G .c(x · y)

The rationale for this:

A CA global behavior derives from application of local behavior to
translates.
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The category of local behaviors

Definition

Objects: uniform spaces.

Maps: local behaviors.

Identities: jdA(c) =df c(1G ).

Compositions: ` • k = ` ◦ k†.

This looks like the coKleisli category of some comonad on Unif . . .
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The exponent comonad

Definition

A uniformly discrete monoid G determines a comonad D = (D, ε, δ) on
Unif as follows:

DA =df A
G with product uniformity for A ∈ |Unif |.

Df =df λc : AG .f ◦ c for f ∈ Unif(A,B).

εA =df λc : AG .c(1G ) for A ∈ |Unif |.

δAc =df λx : G .c B x for c ∈ Unif(AG ,BG ).

Then:

Local behaviors are the maps of coKl(D)!

Global behaviors are the cofree coalgebra maps for D!
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Interpretation of coalgebras
Given u, let a⊗ x = u(a)(x). Then:

A
u // AG

εA
��
A

A
u //

u
��

AG

δA
��

AG uG // (AG )G

become: (with some unital and associative laws in the middle)

A
A×1G// A× G

⊗
��
A

A× G × G
A×(·) //

⊗×G
��

A× G

⊗
��

A× G
⊗ // A

Thus:

the D-coalgebras are the curryings
of the (uniformly continuous) actions of G .
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Interpretation of coalgebra morphisms

Let ⊗ and � be the uncurryings of u and v , respectively. Then:

A
f //

u
��

B

v
��

AG f G // BG

becomes A× G
f×idG //

⊗
��

B × G

�
��

A
f // B

Thus

the D-coalgebra morphisms are the maps
that commute with the respective actions

in the sense that
f (a⊗ x) = f (a)� x
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Interpretation of cofree coalgebra morphisms

If u and v are δA and δB , then:

A
f //

δA
��

B

δB
��

AG f G // BG

becomes AG × G
f×idG //

BA
��

BG × G

BB
��

AG f // BG

which yields:
f (c BA x) = f (c)BB x

But B is the translation (= cofree action). We thus retrieve:

the cofree coalgebra morphisms
are the translation-commuting maps
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Reversible global behaviors

Let f : X → Y be uniformly continuous.

Even if f is bijective, f −1 needs not be u.c.

This, however, is ensured if X is compact (with the induced topology).

Now, if A is discrete, then AG is compact iff A is finite.

But for any comonad D on any category C, if the inverse of a
coalgebra morphism is in C, then it is a coalgebra morphism:

DA
δA //

f
��

D(DA)

Df
��

D(DA)

DB

f −1

==

DB
δB // D(DB)

Df −1

99

The reversibility principle is thus an instance of this general fact.
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Distributive laws: Definition

Let two comonads D i = (D i , εi , δi ) be given.
A distributive law of D1 over D0 is a natural transformation
κ : D1D0 → D0D1 such that the following diagrams commute:

D1D0 κ //

D1ε0 ��

D0D1

ε0D1��
D1

D1D0 κ //

D1δ0
��

D0D1

δ0D1

��
D1D0D0

κD0
// D0D1D0

D0κ

// D0D0D1

D1D0 κ //

ε1D0 ��

D0D1

D0ε1��
D0

D1D0 κ //

δ1D0

��

D0D1

D0δ1
��

D1D1D0

D1κ

// D1D0D1

κD1
// D0D1D1
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Distributive laws: Meaning

Distributive laws allow composing comonads into comonads:

A distributive law induces a comonad

D = (D1D0, ε1ε0, δ1κδ0)

The comonad D0 lifts to a comonad D0 over coKl(D1) defined by:
I D0A =df A;
I D0f =df f ◦ κA : D1D0A → D0B;
I ε0A =df ε

0
A ◦ ε1D0A

;

I δ0A =df δ
0
A ◦ ε1D0A.

Silvio Capobianco (TalTech) Cellular automata and comonads 5 March 2021 24 / 30



Many dimensions

Idea:

Suppose we have two monoids G0, G1.

There is a natural isomorphism (AG0)G1 ∼= AG0×G1 .

We can then think of a k : (AG0)G1 → A either:
I As a 2D CA on G0 × G1 between A and B.
I As a 1D CA on G1 between AG0 and B.

Realization:

Let G i define comonad D i . The following is a distributive law:

κA(c)(x1)(x0) =df c(x0)(x1)

DA =df (A
G0)G1 is a comonad and coKl(D) = coKl(D0).

So k can be seen as a coKl(D1)-CA on G0 from A to B.
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Comonad maps

A comonad map from D to D ′ is a natural transformation τ : D → D ′

such that the following diagrams commute:

D
τ //

ε ""

D ′

ε ′||
IdC

D
τ //

δ

��

D ′

δ ′

��
DD

ττ // D ′D ′

Meaning:

Comonad maps preserve counits and comultiplications.

Comonads and comonad maps form a category.
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Point-dependent behavior

In addition to our comonad D, consider the following comonad D ′:

D ′A =df A
G × G ;

D ′f =df (f ◦−)× idG for f : A → B;

ε ′A(c , x) =df c(x) for c ∈ AG ;

δ ′A(c , x) = (λy .(c , y), x) for c ∈ AG

Then:

D ′-local behaviors satisfy k†(c , x) = (λy .k(c , y), x).

D ′-global behaviors satisfy f (c , x) = (g(c), x) for some g .

The translation B is a comonad map from D ′ to D.

“Ordinary” local behaviors are point-dependent local behaviors that
don’t take the point into account.
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A possible future direction

Call asymptotic two configurations which differ at most in finitely many
points.
A discrete group G is amenable if it has a mean m : `∞(G ) → R which is:

1 linear;

2 nonnegative: if f (x) > 0 for every x ∈ G then m(f ) > 0;

3 consistent: m(λx .1) = 1.

A CA is pre-injective if every two different asymptotic configurations
have different images.

Garden of Eden theorem (Moore and Myhill, 1962): A CA on G = Zd

is pre-injective if and only if it is surjective.

Bartholdi, 2010: The Garden of Eden theorem holds for CA on G if
and only if G is amenable.

How to obtain the Garden of Eden theorem in our setting?
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Conclusions

We set up an experiment with definitions.

We have checked that CA arise as “natural” constructions with
“natural” properties.

We have retrieved some classical results as instances of general facts.

We have checked further developments of this point of view.

We confidently say that the experiment has succeeded.
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Thank you for attention!
Any questions?
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