Cellular Automata and comonads: An overview

Silvio Capobianco

Department of Software Science, Tallinn University of Technology

5 March 2021

Joint work with Tarmo Uustalu Original slides: Tarmo Uustalu, 2010; modified: Silvio Capobianco, 2021

Overview

- Cellular automata (CA) are synchronous distributed systems where the next state of each device only depends on the current state of its neighbors.
- Their implementation on a computer is straightforward, making them very good tools for simulation and qualitative analysis.
- We re-interpret them using category theory.
- We retrieve classical results on CA as special cases of general facts in category theory.
- We suggest further directions to explore.

A cellular automaton (CA) on a monoid G is a triple $\mathcal{A} = \langle A, \mathcal{N}, d \rangle$ where:

- A is a finite alphabet;
- $\mathcal{N} = \{n_1, \ldots, n_m\} \subseteq G$ is a finite neighborhood index
- $d: A^m \rightarrow A$ is a finitary transition function

Local and global behavior of CA

Let ${\it G}=({\it G},1_{\it G},\cdot)$ a monoid, ${\it A}=\langle {\it A},{\it N},{\it d}\rangle$ a CA on ${\it G}$

• G induces on the configurations $c \in A^G$ a family of translations

$$c^{g} = \sigma_{g}(c) = \lambda h : G.c(g \cdot h)$$

• $\mathcal A$ induces a *local behavior* $\Lambda_{\mathcal A}(c): \mathcal A^{\mathcal G} \to \mathcal A$ by

$$\Lambda_{\mathcal{A}}(c) = f(c|_{\mathcal{N}}) = f(c(n_1), \dots, c(n_m))$$

• \mathcal{A} induces a global behavior $\Gamma_{\mathcal{A}}(c): \mathcal{A}^{\mathcal{G}} \to \mathcal{A}^{\mathcal{G}}$ by

$$\begin{aligned} \Gamma_{\mathcal{A}}(c) &= \lambda g : G.f(c^{g}|_{\mathcal{N}}) \\ &= \lambda g : G.f(c(g \cdot n_{1}), \ldots, c(g \cdot n_{m})) \end{aligned}$$

Two classical results

Curtis-Lyndon-Hedlund theorem

Let $f : A^G \to A^G$. The following are equivalent.

- f is the global behavior of a CA.
- If is continuous in the product topology and commutes with the translations.

Reason why: compactness of A^G and uniform continuity of f.

Reversibility principle

- Let f be a bijective CA global behavior.
- Then f^{-1} is also the global behavior of some CA.

Reason why: f is a homeomorphism + Curtis-Hedlund.

Comonads

A *comonad* on a category C is a triple $D = (D, \varepsilon, \delta)$ where:

- D is a functor from C to itself;
- the counit $\varepsilon : D \to Id_{\mathcal{C}}$ and the *comultiplication* $\delta : D \to D^2$ are natural transformations;
- for every $A \in |\mathcal{C}|$ the following diagrams commute:

Equivalently: a comonad on ${\mathcal C}$ is a monad on ${\mathcal C}^{\operatorname{op}}.$

- Comonads provide a solution to the general problem of finding an adjunction generating an endofunctor.
- **2** Comonads appear "naturally" in context-dependent computation.
- Ocomonads also appear to be "natural" models for "emergent" computation—such as CA.

Coalgebras on a comonad

Let $D = (D, \varepsilon, \delta)$ a comonad on a category C.

A D-coalgebra is a pair (A, u), A ∈ |C|, u ∈ C(A, DA) such that the following diagram commutes:

Note that (DA, δ_A) is always a coalgebra, thanks to the comonad laws; we call these *cofree coalgebras*.

 A coalgebra morphism from (A, u) to (B, v) is an f ∈ C(A, B) such that the following diagram commutes:

Constructions on comonads

The coKleisli category coKl(D)

- Objects: $|\operatorname{coKl}(D)| = |\mathcal{C}|$.
- Maps: $\operatorname{coKl}(D)(A, B) = \mathcal{C}(DA, B)$.
- Identities: $jd_A = \varepsilon_A$.
- Composition: $g \bullet f = g \circ f^{\dagger}$ where $f^{\dagger} = Df \circ \delta_A$.

The coEilenberg-Moore category coEM(D)

- Objects: D-coalgebras.
- Maps: coalgebra morphisms.
- Identities and composition: same as in \mathcal{C} .

The Key Fact

Theorem (dual classical)

 $\operatorname{coKl}(D)$ is equivalent to the full subcategory of $\operatorname{coEM}(D)$ generated by the cofree coalgebras.

The trick is that the cofree coalgebras are *final objects* in coEM(D):

Uniform spaces

A *uniform space* is a set X together with a uniformity U made of entourages $U \subseteq X \times X$ such that:

- For every $U \in \mathcal{U}$, $\Delta = \{(x, x) \mid x \in X\} \subseteq U$.
- **2** If $U \subseteq V$ and $U \in \mathcal{U}$ then $V \in \mathcal{U}$.
- **3** If $U, V \in \mathcal{U}$ then $U \cap V \in \mathcal{U}$.
- If $U \in \mathcal{U}$ then $U^{-1} \in \mathcal{U}$.
- **9** If $U \in \mathcal{U}$ then $\exists V \in \mathcal{U} \mid V^2 \subseteq U$.

The richest uniformity is the *discrete uniformity*

$$\mathcal{D} = \{ U \subseteq X \times X \mid \Delta \subseteq U \}$$

Uniformities and topologies

Uniform spaces are "between" topological and metric spaces:

• If \mathcal{U} is a uniformity on X, then the family of the sets:

$$U[x] = \{y \in X \mid (x, y) \in U\}, \ x \in X, U \in \mathcal{U}$$

is a *basis* for a topology \mathcal{T} on X, that is, every element of \mathcal{T} is a union of sets of the form U[x].

• If *d* is a distance on *X*, then the family $\mathcal{U} = \{U_{\delta}\}_{\delta>0}$ where:

$$U_{\delta} = \{(x, y) \in X \times X \mid d(x, y) \leqslant \delta\} = d^{-1} \left([0, \delta] \right)$$

is a uniformity on X.

The discrete uniformity induces the discrete topology.

However, there *exist* nondiscrete uniformities which induce the discrete topology!

The category Unif of uniform spaces

Let (X, \mathcal{U}) and (Y, \mathcal{V}) be uniform spaces.

 $f: X \to Y$ is *uniformly continuous* (briefly, u.c.) if it satisfies one of the following, equivalent, conditions:

- For every $V \in \mathcal{V}$ there exists $U \in \mathcal{U}$ such that $(f \times f)(U) \subseteq V$.
- $(f \times f)^{-1}(V) \in \mathcal{U} \text{ for every } V \in \mathcal{V}.$

The following are immediate:

- The identity is uniformly continuous.
- Composition of u.c. functions is u.c.

We denote by \mathbf{Unif} the category of uniform spaces with u.c. functions.

Currying back and forth

Definition in **Set**:

• Let $f : A \times X \to Y$, $\overline{f} : A \to Y^X$ satisfy $f(a, x) = \overline{f}(a)(x) \ \forall a, x$.

• We call \overline{f} the currying of f, and f the uncurrying of \overline{f} . Issues in **Top**:

- Y^X must be given a topology, call it \mathcal{T} .
- Such \mathcal{T} must make f continuous if and only if so is \overline{f} .
- It turns out that ${\mathcal T}$ is either nonexistent, or unique.
- For X discrete, T is the *product topology*: coarsest making projections continuous.

Issues in Unif:

- Same as in Top, with uniformities in place of topologies.
- If X has the discrete uniformity, then Y^X may be given the product uniformity, *i.e.*, coarsest making evaluations u.c.

Local behaviors on uniform spaces

Let $G = (G, 1_G, \cdot)$ be a uniformly discrete monoid.

Definition

A *local behavior* between two uniform spaces A, B is a uniformly continuous function

$$k: A^G \to B$$

where A^G is *prodiscrete* (product of discrete uniformities).

The rationale for this:

- A CA local behavior k derives from a finitary function d.
- Curtis-Lyndon-Hedlund: k is u.c. with A discrete and A^{G} prodiscrete.

Global behaviors on uniform spaces

Let $G = (G, 1_G, \cdot)$ be a uniformly discrete monoid.

Definition

The *global behavior* associated to a local behavior $k : A^G \to B$ is the uniformly continuous function $k^{\dagger} : A^G \to B^G$ defined by:

$$k^{\dagger}(c) =_{\mathrm{df}} \lambda x : G.k(c \rhd x)$$

where

$$c \triangleright x =_{\mathrm{df}} \lambda y : G.c(x \cdot y)$$

The rationale for this:

• A CA global behavior derives from application of local behavior to translates.

The category of local behaviors

Definition

- Objects: uniform spaces.
- Maps: local behaviors.
- Identities: $jd_A(c) =_{df} c(1_G)$.
- Compositions: $\ell \bullet k = \ell \circ k^{\dagger}$.

This looks like the coKleisli category of some comonad on Unif...

The exponent comonad

Definition

A uniformly discrete monoid G determines a comonad $D = (D, \varepsilon, \delta)$ on **Unif** as follows:

• $DA =_{df} A^G$ with product uniformity for $A \in |\mathbf{Unif}|$.

•
$$Df =_{\mathrm{df}} \lambda c : A^{\mathsf{G}} \cdot f \circ c$$
 for $f \in \mathrm{Unif}(A, B)$.

•
$$\varepsilon_A =_{\mathrm{df}} \lambda c : A^{\mathcal{G}}.c(1_{\mathcal{G}})$$
 for $A \in |\mathbf{Unif}|$.

•
$$\delta_A c =_{\mathrm{df}} \lambda x : G.c \rhd x \text{ for } c \in \mathrm{Unif}(A^G, B^G).$$

Then:

- Local behaviors are the maps of $\operatorname{coKl}(D)!$
- Global behaviors are the cofree coalgebra maps for D!

Interpretation of coalgebras

Given u, let $a \otimes x = u(a)(x)$. Then:

become: (with some unital and associative laws in the middle)

Thus:

the *D*-coalgebras are the curryings of the (uniformly continuous) actions of *G*.

Silvio Capobianco (TalTech)

Cellular automata and comonads

Interpretation of coalgebra morphisms

Let \otimes and \otimes be the uncurryings of *u* and *v*, respectively. Then:

$$\begin{array}{ccc} A & \stackrel{f}{\longrightarrow} B \text{ becomes } A \times G & \stackrel{f \times \mathrm{id}_{G}}{\longrightarrow} B \times G \\ \downarrow & & \downarrow v & \otimes \downarrow & & \downarrow \otimes \\ A^{G} & \stackrel{f^{G}}{\longrightarrow} B^{G} & A & \stackrel{f}{\longrightarrow} B \end{array}$$

Thus

the *D*-coalgebra morphisms are the maps that commute with the respective actions

in the sense that

$$f(a \otimes x) = f(a) \oslash x$$

Silvio Capobianco (TalTech)

Interpretation of cofree coalgebra morphisms

If u and v are δ_A and δ_B , then:

$$\begin{array}{c|c} A & \xrightarrow{f} & B & \text{becomes } A^G \times G & \xrightarrow{f \times \mathrm{id}_G} & B^G \times G \\ \hline \delta_A & & & & \downarrow \\ \delta_B & & & \downarrow \\ A^G & \xrightarrow{f^G} & B^G & A^G & \xrightarrow{f} & B^G \end{array}$$

which yields:

$$f(c \triangleright_A x) = f(c) \triangleright_B x$$

But \triangleright is the translation (= cofree action). We thus retrieve:

the cofree coalgebra morphisms are the translation-commuting maps

Reversible global behaviors

Let $f : X \to Y$ be uniformly continuous.

- Even if f is bijective, f^{-1} needs not be u.c.
- This, however, is ensured if X is compact (with the induced topology).
- Now, if A is discrete, then A^G is compact iff A is finite.
- But for any comonad *D* on any category *C*, if the inverse of a coalgebra morphism is in *C*, then it is a coalgebra morphism:

The reversibility principle is thus an instance of this general fact.

Distributive laws: Definition

Let two comonads $D^i = (D^i, \varepsilon^i, \delta^i)$ be given. A *distributive law* of D^1 over D^0 is a natural transformation $\kappa : D^1 D^0 \to D^0 D^1$ such that the following diagrams commute:

・ロト ・伺 ト ・ヨト ・ヨト ・ヨー うのつ

Distributive laws: Meaning

Distributive laws allow composing comonads into comonads:

• A distributive law induces a comonad

$$D = (D^1 D^0, \varepsilon^1 \varepsilon^0, \delta^1 \kappa \delta^0)$$

• The comonad D^0 *lifts* to a comonad $\overline{D^0}$ *over* $\operatorname{coKl}(D^1)$ defined by:

$$\begin{array}{l} \bullet \ \overline{D^0}A =_{\mathrm{df}} A; \\ \bullet \ \overline{D^0}f =_{\mathrm{df}} f \circ \kappa_A : D^1 D^0 A \to D^0 B; \\ \bullet \ \overline{\varepsilon^0}_A =_{\mathrm{df}} \varepsilon^0_A \circ \varepsilon^1_{D_0 A}; \\ \bullet \ \overline{\delta^0}_A =_{\mathrm{df}} \delta^0_A \circ \varepsilon^1_{D^0 A}. \end{array}$$

Many dimensions

Idea:

- Suppose we have *two* monoids G_0 , G_1 .
- There is a natural isomorphism $(A^{G_0})^{G_1} \cong A^{G_0 \times G_1}$.
- We can then think of a $k: (A^{G_0})^{G_1} \to A$ either:
 - As a 2D CA on $G_0 \times G_1$ between A and B.
 - As a 1D CA on G_1 between A^{G_0} and B.

Realization:

• Let G^i define comonad D^i . The following is a distributive law:

$$\kappa_A(c)(x_1)(x_0) =_{\mathrm{df}} c(x_0)(x_1)$$

- $DA =_{df} (A^{G_0})^{G_1}$ is a comonad and $\operatorname{coKl}(D) = \operatorname{coKl}(\overline{D^0})$.
- So k can be seen as a $\operatorname{coKl}(D^1)$ -CA on G_0 from A to B.

Comonad maps

A comonad map from D to D' is a natural transformation $\tau: D \to D'$ such that the following diagrams commute:

Meaning:

- Comonad maps preserve counits and comultiplications.
- Comonads and comonad maps form a category.

Point-dependent behavior

In addition to our comonad D, consider the following comonad D':

•
$$D'A =_{df} A^G \times G$$
;
• $D'f =_{df} (f \circ -) \times id_G$ for $f : A \to B$;
• $\varepsilon'_A(c, x) =_{df} c(x)$ for $c \in A^G$;
• $\delta'_A(c, x) = (\lambda y.(c, y), x)$ for $c \in A^G$

Then:

- D'-local behaviors satisfy $k^{\dagger}(c, x) = (\lambda y.k(c, y), x)$.
- D'-global behaviors satisfy f(c, x) = (g(c), x) for some g.
- The translation \triangleright is a comonad map from D' to D.
- "Ordinary" local behaviors are point-dependent local behaviors that don't take the point into account.

A possible future direction

Call *asymptotic* two configurations which differ at most in finitely many points.

A discrete group G is *amenable* if it has a *mean* $m : \ell_{\infty}(G) \to \mathbb{R}$ which is:

- linear;
- 2 *nonnegative:* if $f(x) \ge 0$ for every $x \in G$ then $m(f) \ge 0$;
- **3** consistent: $m(\lambda x.1) = 1$.
 - A CA is *pre-injective* if every two different asymptotic configurations have different images.
 - Garden of Eden theorem (Moore and Myhill, 1962): A CA on G = Z^d is pre-injective if and only if it is surjective.
 - *Bartholdi, 2010:* The Garden of Eden theorem holds for CA on *G* if and only if *G* is amenable.

How to obtain the Garden of Eden theorem in our setting?

イロト 不得 トイヨト イヨト 二日

Conclusions

We set up an experiment with definitions.

- We have checked that CA arise as "natural" constructions with "natural" properties.
- We have retrieved some classical results as instances of general facts.
- We have checked further developments of this point of view.

We confidently say that the experiment has succeeded.

Thank you for attention!

Any questions?

Silvio Capobianco (TalTech)

Cellular automata and comonads

5 March 2021 30 / 30

э