Lab 2

Functional Programming (IT10212)
2021.02.02

1. The type One from the lecture is built in to Idris as Unit. The type Zero
from the lecture is built in to Idris as Void.

(a) Write a function of type Bool -> Unit. How many different func-
tions of this type are there?

(b) How many functions are there of type Bool -> Bool? Write them
all.

(c) Write a function of type Nat -> Unit. How many different functions
of this type are there?

(d) How many functions are there of type Unit -> Nat? Write one of
them down.

(e) How many functions are there of type Void -> Void. Write them
all down.

(f) How many functions are there of type Nat -> Void? Write them all
down.

(g) How many functions are there of type Void -> Nat? Write them all
down.

2. Recall the Shape type from the lecture:

data Shape : Type where
Circle : Nat -> Shape
Rectangle : Nat -> Nat -> Shape
IsoTriangle : Nat -> Nat -> Shape

with the idea being that Circle k is the circle of radius k, Rectangle a
b is the rectangle with length a and width b, and Isotriangle a b is the
isoceles triangle with base width a (one side) and leg length b (two sides).

(a) Write a function area : Shape -> Double that computes the area
of a Shape.
(b) Write a function regular : Shape -> Bool that returns True if

the input Shape is regular (that is, all of its sides are of equal length),
and returns False otherwise.



()

Add a type constructor to the Shape type to represent regular n-
sided polygons. Update your area and regular functions to account
for this new type constructor.

Is our representation of isoceles triangles a good one? Put another
way, is is possible to specify every isoceles triangle in the way we have
chosen? Does every instance of (IsoTriangle a b) : Shape give
an isoceles triangle?

Write a function monus : Nat -> Nat -> Nat that subtracts the
second argument from the first. If the second argument is greater
than the first, the result should be zero.

Use pattern matching to write a function even : Nat -> Bool that
returns True in case it’s input is an even number, and False other-
wise.

Write a function odd : Nat -> Bool that does the same, but for
odd numbers.



