
Lab 6

Functional Programming (ITI0212)

2021.03.02

Inductive Types and Recursive Functions
Task 1
Augment the Shape type from lecture 6 with a constructor Star for 𝑛-pointed stars, where an
𝑛-pointed star of length 𝑙 and height ℎ consists of an 𝑛-sided regular polygon of face length 𝑙 with
an isosceles triangle of base 𝑙 and height ℎ attached along each face.

Task 2
Update the area function to be compatible with your new definition of Shape.

Type Constructors
Task 3
Write the following function, which returns the element at the specified index of a List, if any:

��
indexList : (index : Nat) -> List a -> Maybe a

Task 4
Write the following function, which returns the element at the specified index of a Vect:

��
indexVect : (index : Fin n) -> Vect n a -> a

Why do we not need Maybe in the return type?

Higher-Order Functions
Task 5
Write a zip function for trees:

��
zipTree : (a -> b -> c) -> Tree a -> Tree b -> Tree c

Task 6
Write the fold function for the parameterized type Maybe a.

Task 7
Use your fold for Maybes in order to write the map for Maybes as a one-liner:

��
mapMaybe : (a -> b) -> Maybe a -> Maybe b

1



IO
Task 8
Suppose that we have a number of computations, each of type IO (Either error Unit), which
when run may yield either the result Right () if they complete normally or else Left e, where
e is an element of some type error, if something goes wrong. Write a function that takes a list
of such computations and returns a computation that tries to run them in order, but stops if it
encounters an error, returning the error and discarding any pending computations from the list:

��
tryIOs : List (IO (Either error Unit)) -> IO (Maybe error)

Task 9
Suppose that we again want to run our list of computations in order, but now we want to run them
all unconditionally and return a list of any errors that occurred:

��
batchIOs : List (IO (Either error Unit)) -> IO (List error)

2


