
Lab 8

Functional Programming (ITI0212)

2021.03.16

Gaussian Integers
Recall the type of Gaussian integers from lecture 8:

data GaussianInteger : Type where
Gauss : Integer -> Integer -> GaussianInteger

We saw in lecture how to define a Num instance for this type so that we could add and multiply
them. There is another numeric interface extending Num called Neg, with a single method called
negate representing the unary minus (𝑥 ↦ −𝑥). Subtraction is implemented using this interface
by defining x - y as x + (negate y).

Task 1
Write a Neg instance for the type of Gaussian integers:

implementation Neg GaussianInteger where

With this you should be able to do things like:

> -(Gauss 1 2)
Gauss -1 -2
> (Gauss 1 2) + - (Gauss 3 4)
Gauss -2 -2

note: I think that you should be able to use the binary infix subtraction operator (-) too, but it
doesn’t seem to work for me.

Task 2
Write an Eq instance for Gaussian integers:

implementation Eq GaussianInteger where

Task 3
Write a named Ord instance for Gaussian integers:

implementation [lex] Ord GaussianInteger where

which compares them lexicographically:

> compare @{lex} (Gauss 1 200) (Gauss 2 1)
LT
> compare @{lex} (Gauss 2 1) (Gauss 2 1)
EQ
> compare @{lex} (Gauss 3 1) (Gauss 2 4)
GT

1



Task 4
Use the Mag instance for Gaussian integers defined in lecture to write a named Ord instance for
Gaussian integers:

implementation [mag] Ord GaussianInteger where

which compares them by magnitude:

> compare @{mag} (Gauss 1 200) (Gauss 2 1)
GT
> compare @{mag} (Gauss 2 1) (Gauss 2 1)
EQ
> compare @{mag} (Gauss 3 1) (Gauss 2 4)
LT

Comparing Lists
The default Eq instance for Lists compares them pointwise, that is, two lists are considered equal
if they have the same elements in the same order:

> the (List Nat) [1,2,3] == [3,2,1]
False
> the (List Nat) [1,2,3] == [1,2,3,3]
False
> the (List Nat) [1,2,3] == [1,2,3]
True

For the following tasks you will need to import Data.List.

Task 5
Write a named Eq instance for lists that compares them setwise:

implementation [setwise] Eq a => Eq (List a) where

that is, two lists should be considered equal if each element that occurs (at least once) in one of
the lists also occurs (at least once) in the other:

> (==) @{setwise} [1,2,3] [3,2,1]
True
> (==) @{setwise} [1,2,3] [1,2,3,3]
True
> (==) @{setwise} [1,2,3] [1,2,4]
False

hint: the following functions may be useful:

• elem : Eq a => a -> List a -> Bool

• all : (a -> Bool) -> List a -> Bool

Task 6
Write a named Eq instance for lists that compares them multisetwise:

implementation [multisetwise] Eq a => Eq (List a) where

that is, two lists should be considered equal if each list contains the same number of copies of each
element as the other, regardless of order:

2



> (==) @{multisetwise} [1,2,3] [3,2,1]
True
> (==) @{multisetwise} [1,2,3] [1,2,3,3]
False
> (==) @{multisetwise} [1,2,3] [1,2,4]
False

hint: the following functions may be useful:

• elem : Eq a => a -> List a -> Bool

• delete : Eq a => a -> List a -> List a

3


