1. Write `Semigroup` and `Monoid` instances for `Bool` such that:
   ```
   > True <+> False
   False
   > False <+> True
   False
   > True <+> neutral
   True
   ```

2. Write a function that reduces a list of elements of any type with a monoid structure to an element of that type. For example:
   ```
   > reduce [True, False, True]
   False
   > reduce ["hello ", "brave ", "new ", "world"]
   "hello brave new world"
   > reduce $ the (List String) []
   ""
   ```

3. Working with the definitions from the script file from this week’s lecture, write the `disjointUnion : Set a -> Set b -> Set (Either a b)` function using the `do` syntax.

4. Write a function
   ```
   join : Set (Set a) -> Set a
   ```
 that takes a set of sets and unions them together: e.g. `join \{ \{a, b\}, \{b, c\}, \{b\}, \{a, d\}\} = \{a, b, c, d\}`. Try using the monadic style for extra conciseness.

5. Generalise the previous question by writing a function of type
   ```
   join : Monad t => t (t a) -> t a.
   ```
6. Take the Tree data type from Lecture 9

 data Tree: Type -> Type where
 Leaf: (label: a) -> Tree a
 Node: (label: a) -> (child1: Tree a) -> (child2: Tree a) -> Tree a

and write a function

 glueTrees: Tree a -> Tree a -> Tree a -> Tree a

such that glueTrees t1 t2 t3 results in a tree that has t2 and t3 added as the left and right child of each of the leaves of t1.

7. Use glueTrees to come up with an implementation of Applicative and Monad for Tree.

8. Use the following function

 sapling: Unit -> Tree Unit
 sapling () = Node () (Leaf ()) (Leaf ()

in conjunction with the monadic structure on Tree to write a function that takes a Nat n and generates a Tree Unit of depth 2^n where depth is defined as follows:

 depth: Tree a -> Nat
 depth (Leaf label) = 1
 depth (Node label child1 child2) = 1 + max (depth child1) (depth child2)