
Lab 9
Functional Programming (ITI0212)

1. Write Semigroup and Monoid instances for Bool such that:
> True <+> False

False

> False <+> True

False

> True <+> neutral

True

2. Write a function that reduces a list of elements of any type with a monoid structure
to an element of that type. For example:
> reduce [True , False , True]

False

> reduce ["hello " , "brave " , "new " , "world"]

"hello brave new world"

> reduce $ the (List String) []

""

3. Working with the definitions from the script file from this week’s lecture, write the

disjointUnion : Set a -> Set b -> Set (Either a b)

function using the do syntax.

4. Write a function
join : Set (Set a) -> Set a

that takes a set of sets and unions them together: e.g. join {{a, b}, {b, c}, {b}, {a, d}} =
{a, b, c, d}. Try using the monadic style for extra conciseness.

5. Generalise the previous question by writing a function of type

join : Monad t => t (t a) -> t a.



6. Take the Tree data type from Lecture 9

data Tree: Type -> Type where

Leaf: (label: a) -> Tree a

Node: (label: a) -> (child1: Tree a) -> (child2: Tree a) -> Tree a

and write a function

glueTrees: Tree a -> Tree a -> Tree a -> Tree a

such that glueTrees t1 t2 t3 results in a tree that has t2 and t3 added as the left
and right child of each of the leaves of t1.

7. Use glueTrees to come up with an implementation of Applicative and Monad for
Tree.

8. Use the following function

sapling: Unit -> Tree Unit

sapling () = Node () (Leaf ()) (Leaf ())

in conjunction with the monadic structure on Tree to write a function that takes a
Nat n and generates a Tree Unit of depth 2n where depth is defined as follows:

depth: Tree a -> Nat

depth (Leaf label) = 1

depth (Node label child1 child2) = 1 + max (depth child1) (depth child2)

2


