
Lab 11

Functional Programming (ITI0212)

2021.04.06

This week we are learning about how to regard a type as a proposition and an element of a type
as a proof of the corresponding proposition.

To complete this lab you should import the module Lecture11 that we developed interactively
during lecture. If you are using Idris 2, you will also need to import Data.Nat in order to use the
type constructor LTE.

LTE and Addition
In lecture we proved that LTE is a reflexive and transitive relation on the natural numbers. Now
we will explore how this relation interacts with the operation of addition.

Task 1
As a warm-up, prove that every natural number is less than or equal to its own successor:

succ_larger : {n : Nat} -> LTE n (S n)

You should do this by induction on the natural number n, which you can bring into scope by
explicitly binding the implicit argument using the notation {n = n} on the left of the generated
clause.

Task 2
Use the fact that you proved in task 1 together with the transitivity of LTE, which was proved in
lecture, in order to prove the following two “weakening lemmas” about LTE:

lte_weaken_right : {m , n : Nat} -> LTE m n -> LTE m (S n)

lte_weaken_left : {m , n : Nat} -> LTE (S m) n -> LTE m n

Task 3
Now prove the following facts about adding zero on the right or on the left:

zero_plus_right : (m , n : Nat) -> LTE (m + 0) (m + n)

zero_plus_left : (m , n : Nat) -> LTE (0 + n) (m + n)

As you examine the intermediate proof states, recall that addition of natural numbers is defined
recursively on the first argument (:printdef plus), so that as far as Idris is concerned 0 + n and
n are interchangeable, and likewise, S m + n and S (m + n) are interchangeable.
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Task 4
Next, prove the following facts about adding a successor on the right or on the left:

succ_plus_right : (m , n : Nat) -> LTE (m + n) (m + S n)

succ_plus_left : (m , n : Nat) -> LTE (m + n) (S m + n)

Exponentiating an Even Number
In lecture we proved that the sum and product of two even natural numbers is even. Here we
consider exponentiation. Without thinking too hard, we might believe that for any 𝑛, if 𝑚 is even
then the exponential 𝑚𝑛 is even too. This is almost true, except when 𝑛 is 0.

We begin by defining a predicate for positive numbers as a Nat-indexed type:

data Positive : Nat -> Type where
One_positive : Positive (S Z)
S_positive : Positive n -> Positive (S n)

which we can think of as follows:
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The type Positive 0 is empty, the type Positive 1 is a singleton containing the element One_positive,
and every type Positive (S (S n)) is also a singleton containing the result of applying the func-
tion S_positive to the sole inhabitant of the type Positive (S n).

We can use this type together with Even to express the proposition that we wish to prove: if 𝑚 is
even and 𝑛 is positive then 𝑚𝑛 is even. This should go smoothly, except for one wrinkle.

Task 5
Because we don’t yet know how to tell Idris about equality, we will need the following easy lemma,
which you should now prove:

even_times_one : Even n -> Even (n * 1)

We are now nearly ready to prove that a positive power of an even number is even. Often the
easiest way to prove a property about a recursively defined object is to try to follow its recursive
structure in the structure of your proof. Examine the recursive structure of the exponentiation
function on natural numbers with :printdef power. On which argument is it recursive?

Task 6
Write a proof of the theorem that a positive power of an even number is even by using induction
on the assumption corresponding to the recursive argument in the function power.

pow_even_pos : Even m -> Positive n -> Even (power m n)
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