This week we are learning about how to do logic in the propositions-as-types interpretation. The constructive logic that this interpretation realizes is somewhat different from the Boolean logic with which you’re surely familiar. For example, because it is not required that every proposition be decidable, we cannot prove the principle of the excluded middle:

\[
\text{excluded_middle} : \{ a : \text{Type} \} \rightarrow a \text{ `Or` } \lnot a
\]

Nevertheless, many familiar theorems from Boolean logic remain valid.

Task 1
Convince Idris that the principle of contraposition is valid:

\[
\text{contrapositive} : (a \rightarrow b) \rightarrow \lnot b \rightarrow \lnot a
\]

Task 2
Convince Idris that the principle of double-negation introduction is valid:

\[
\text{dni} : a \rightarrow \lnot \lnot a
\]

Task 3
In general, the converse of double-negation introduction is not constructively provable. However, an important special case, where \(a \) is itself a negation, is provable.

Convince Idris that the principle of triple-negation reduction is valid:

\[
\text{tnr} : \lnot \lnot \lnot a \rightarrow \lnot a
\]

Hint: the principle of double-negation introduction will be helpful here.

Task 4
Convince Idris that two nonempty lists with different heads are different:

\[
\text{heads_differ} : \lnot (x = y) \rightarrow \lnot (x :: xs = y :: ys)
\]

Hint: your \textit{contrapositive} function from task 1 may be helpful here. You can \texttt{\%hide Prelude.Stream.(::)} if the overloading confuses Idris.

Task 5
Convince Idris that two nonempty lists with different tails are different:

\[
\text{tails_differ} : \lnot (xs = ys) \rightarrow \lnot (x :: xs = y :: ys)
\]

Task 6
Convince Idris that each natural number is either odd or even:

\[
\text{odd_or_even} : (n : \text{Nat}) \rightarrow \text{Odd } n \text{ `Or` Even } n
\]