
Lab 14

Functional Programming (ITI0212)

2021.04.27

This week we are learning about decidability and automation in Idris programming.

A decision procedure for a predicate is an algorithm that for each index either produces a proof
that the predicate holds or else a refutation proving that it does not. In Idris the type constructor
for decidability is called Dec with constructors Yes and No. Additionally, there is an interface for
types with decidable equality called DecEq in the standard library module Decidable.Equality.

An auto-implicit argument is one that is intended to be found by Idris’s term search mechanism.
By default this consists of using constructors and recursion in order to find a term of a given type,
but you may specify additional terms for it to try using the %hint directive. We typically use
auto-implicit arguments as constraints to guarantee that some validity condition is satisfied.

Task 1
Write a function that returns the head element of a nonempty list:

list_head : (xs : List a) -> {auto nonempty : Not (xs = [])} -> a

Make sure that it is able to satisfy the nonempty constraint for list literals formed with the (::)
constructor:

> list_head [1 , 2 , 3]
1
> list_head [1]
1
> list_head []
Error: Can't find an implementation for Void.

Task 2
Write a function that returns the list element at a valid index:

list_index : (i : Nat) -> (xs : List a) ->
{auto inbounds : LTE (S i) (length xs)} -> a

Make sure that it is able to satisfy the inbounds constraint for appropriate Nat and List literals:

> list_index 0 [True , False]
True
> list_index 1 [True , False]
False
> list_index 2 [True , False]
Error: Can't find an implementation for LTE 3 2.

Task 3
Write a decision procedure for the ≤ relation on natural numbers:

decide_LTE : (m , n : Nat) -> Dec (LTE m n)

1



Task 4
Use the following definition of the “between” relation on natural numbers:

Between : Nat -> Nat -> Nat -> Type
Between lower upper n = LTE lower n `And` LTE n upper

in order to write a decision procedure for betweenness:

decide_between : (lower , upper , n : Nat) -> Dec (Between lower upper n)

Task 5
Recall the type of (node-labeled binary) trees:

data Tree : Type -> Type where
Leaf : Tree a
Node : (l : Tree a) -> (x : a) -> (r : Tree a) -> Tree a

In this task you will write a decision procedure for Tree equality by implementing the DecEq
interface for Trees whose element types themselves have decidable equality:

implementation DecEq a => DecEq (Tree a) where

Here are some hints to help you:

• A Tree is like a List with two tails, so the decision procedure for List equality that we
wrote in lecture, decide_list_eq will be a useful guide.

• Recall the heads_differ and tails_differ functions for Lists that you wrote in lab last
week. You most likely implemented these using contrapositive. In this task you will need
to do something analogous for Trees.

• When you case analyze a term decEq x y, remember that in the Yes branch, if you further
case analyze the equality proof you will discover that the only constructor is Refl, and in
this case the equality indices are unified.

2


