
Course Project: Stack Language

Functional Programming (ITI0212)

Due 2021.04.26

The course project is to implement a simple stack langage. The project is
divided into four tasks. In each task, you will expand the capabilities of your
stack language. Your grade for the project will be determined by how many
tasks you complete, and by how well you have completed them. The first and
second task are each worth 30% of your overall grade, and the third and fourth
task are each worth 20%. You will be graded both for correctness and style,
with correctness making up 70% of your grade, and style the remaining 30%.
Your git commit logs will be assessed as part of the style component, so push
early, and push often. The project is worth 30% of your overall course grade.

You are expected to work on your project using the TalTech GitLab server
(https://gitlab.cs.ttu.ee) within the repository named iti0212-2021 that
you have been using to submit your assignments. Please make a directory
named project in this repository, and store your project files there. When
the submission deadline arrives, the contents of this directory will be collected
automatically. Please include a file named README.txt that contains your name
in the project directory to assist in the grading process.

Recall that a stack is an abstract data type that serves as a collection of
elements, and supports two principal operations:

• Push, which adds an element to the collection, and

• Pop, which removes the most recently added element that has not yet
been removed.

A stack language is a way of specifying computations, built around a stack.
A stack language consists of a sequence of symbols, each with an effect on the
stack. For example, a symbol might have one of the following effects:

• Push one or more values onto the stack.

• Pop one or more values off of the stack, perform an operation on them,
and push the result.

• Rearrange the elements at the top of the stack.

A program in a stack language is a sequence of symbols. The effect of a
program is to perform the effects of its constituent symbols in the order they
appear.

1

https://gitlab.cs.ttu.ee

1 RPN Calculator (30%)

You may already be familiar with reverse Polish notation (RPN) – also known
as postfix notation. When we write down arithmetic expressions like 5 + 3 or
(3 + 5) * 6 we write the operations between their arguments. That is, we use
infix notation. This is not the only possibility. With reverse Polish notation,
we write the operations after their arguments instead of between them:

Infix Notation: | Postfix Notation:

-------------------+---------------------

5 * 3 | 5 3 *

(3 + 5) * 6 | 3 5 + 6 *

3 + (5 * 6) | 3 5 6 * +

(3 + 4) * (5 + 1) | 3 4 + 5 1 + *

The reason that people often call this “reverse Polish notation” instead of simply
“postfix notation” is that it was first introduced by a Polish logician named Jan
 Lukasiewicz. Writing expressions using postfix notation makes them simpler
to deal with programmatically. For example, notice that when using postfix
notation we do not need any parentheses to specify the order of operations.

Your first task is to write a function eval : String -> Maybe Nat that
evaluates arithmetic expressions written in reverse Polish notation. Your cal-
culator must support natural number addition and multiplication. If the input
string is not a valid arithmetic expression, your function should return Nothing.
Otherwise, your function should evaluate the expression and return Just the
resulting natural number. For example:

REPL> eval 3

Just 3

REPL> eval "3 5 +"

Just 8

REPL> eval "+ 3 5"

Nothing

REPL> eval "3 + 5"

Nothing

REPL> eval "5 3 *"

Just 15

REPL> eval "hello"

Nothing

REPL> 3 5 + 6 *

Just 48

REPL> 3 5 6 * +

Just 33

REPL> eval ""

Nothing

REPL> 3 4 + 5 1 + *

Just 42

2

You must implement eval as a stack language. Break the input string (the
program) into appropriate symbols, and compute the result by performing their
effects to an initially empty stack in the order they appear.

2 IO and Program Files (30%)

Your second task has two parts. First, we want to read the program for our
stack language from a file, instead of typing it in to the REPL. To do this you
should use the functions provided by the System.File library. In particular the
function

readFile : (filepath : String) -> IO (Either FileError String)

can be used to obtain the contents of a file as a String. You should now be able
to run your evaluator as an executable. For example, if the program is stored
in file prog then we might write

$> ./interpret prog

to call run our evaluator on the program.
Second, we want to add symbols to the stack language for reading user input,

and for writing to the standard output. Specifically, add symbols r and p to
your language. The effect of r on the stack is to prompt the user for input,
attempt to parse that input as a symbol, and perform the effect of that symbol
on the stack. If the user input cannot be parsed as a symbol then evaluation
should fail, returning Nothing. The effect of p is pop the top element of the
stack and print it. If there is no top element of the stack, then evaluation should
fail, returning Nothing. For example:

$> echo 3 5 r > prog && ./interpret prog

$> Please Enter a Symbol: +

$> 8

$> echo 3 5 r > prog && ./interpret prog

$> Please Enter a Symbol: *

$> 15

$> echo 3 5 r > prog && ./interpret prog

$> Please Enter a Symbol: hello

$> No Result!

$> echo 3 r + > prog && ./interpret prog

$> Please Enter a Symbol: 5

$> 8

$> echo 3 r + > prog && ./interpret prog

$> Please Enter a Symbol: *

$> No Result!

$> echo r r r > prog && ./interpret prog

$> Please Enter a Symbol: 3

$> Please Enter a Symbol: 5

3

$> Please Enter a Symbol: *

$> 15

$> echo 15 p 5 > prog && ./interpret prog

$> Evaluation Prints: 15

$> 5

$> echo r p 3 > prog && ./interpret prog

$> Please Enter a Symbol: 4

$> Evaluation Prints: 4

$> 3

$> echo 3 5 * 4 + p 3 > prog && ./interpret prog

$> Evaluation Prints: 19

$> 3

3 Adding a Global Store (20%)

Your third task is to add a global store to your stack language. Symbols will
have an effect both on the stack, and on the global store. This involves two new
symbols, b and d. The effect of b is to store the second element of the stack at
a position in the global store given by the first element of the stack, after which
neither the first nor second element should remain on the stack. The effect of d
on the stack is to replace the top element of the stack with the element at that
position in the global store. If no such element is present in the store, evaluation
should fail. For example:

$> echo 42 4 b 4 d > prog && ./interpret prog

$> 42

$> echo 42 4 b 5 d > prog && ./interpret prog

$> No Result!

$> echo 6 5 b 3 4 + 5 d * > prog && ./interpret prog

$> 24

$> echo 5 1 b 2 2 b 10 1 d + > prog && ./interpret prog

$> 15

$> echo 5 1 b 2 2 b 10 1 d + 2 d *

$> 30

$> 2 1 b 1 d 1 d 1 d 1 d * * * > prog && ./interpret prog

$> 16

$> 2 1 b 3 1 b 1 d 1 d * > prog && ./interpret prog

$> 9

It may be helpful to think of the global store as a table of positions and their
contents, as in:

position | 1 | 5 | 10

---------+----+----+----

contents | 42 | 5 | 2

4

which we can understand as a global store with three entries: position 1 holds
42, position 5 holds 5, and position 10 holds 2. Now, the effect of 15 10 b

would be to replace the contents of position 10 with 15, resulting in:

position | 1 | 5 | 10

---------+----+----+----

contents | 42 | 5 | 15

From here, the effect of 7 3 b would be to store 7 in position 3:

position | 1 | 3 | 5 | 10

---------+----+----+----+----

contents | 42 | 7 | 5 | 15

and the effect of, say, 1 d would be to push 42 onto the stack, resulting in the
same store:

position | 1 | 3 | 5 | 10

---------+----+----+----+----

contents | 42 | 7 | 5 | 15

4 Something More (20%)

Your fourth task is to further extend the functionality of your language. You
may choose what you would like to do, for example from the following list:

1. Make your language into a Turing-complete model of computation. See
for example the Joy language (http://joy-lang.org/).

2. Make your stack language draw turtle graphics (https://en.wikipedia.
org/wiki/Turtle_graphics) as it executes, with special instructions to
control the turtle.

3. Make your stack language into a command line utility. Think of something
for it to do, come up with a reasonable set of features, and implement
them.

Alternatively, you are encouraged to come up with your own ideas about what
you would like your stack language to do. In this case, you must tell discuss
your idea with the lecturers so that we can agree on something that is both
nontrivial and possible to complete in a reasonable amount of time. Your idea
could be anything.

5

http://joy-lang.org/
https://en.wikipedia.org/wiki/Turtle_graphics
https://en.wikipedia.org/wiki/Turtle_graphics

	RPN Calculator (30%)
	IO and Program Files (30%)
	Adding a Global Store (20%)
	Something More (20%)

