
Homework 1

Functional Programming (ITI0212)

due: 2022-03-02

Place your solutions in a module named Homework1 in a file with path homework/Homework1.idr
within a repository called iti0212-2022 on the TalTech GitLab server (https:
//gitlab.cs.ttu.ee/). Your solutions will be pulled automatically for marking
shortly after the due date.

At the start of the file include a comment containing your name as it appears in your
university records. Precede each problem’s solution with a comment specifying the
problem number.

The solution file that you submit should load without errors. If you encounter a
syntax or type error that you are unable to resolve, please use comments or holes to
isolate them from the part of the file interpreted by Idris.

Problem 1
Write a recursive definition for the exponentiation function on the natural numbers,
𝑚𝑛:

exp : Nat -> Nat -> Nat

For example:

Homework1> exp 2 0

1

Homework1> exp 2 1

2

Homework1> exp 2 2

4

Homework1> exp 2 3

8

Problem 2
The Ackermann function is a famously fast-growing total computable function with
the following type:

ack : Nat -> Nat -> Nat

and recursively defined by:

ack 𝑚 𝑛 =
⎧{
⎨{⎩

𝑛 + 1 if 𝑚 = 0
ack (𝑚 − 1) 1 if 𝑚 ≠ 0 and 𝑛 = 0
ack (𝑚 − 1) (ack 𝑚 (𝑛 − 1)) otherwise

Write the Ackermann function in Idris using pattern matching. Make sure Idris agrees
that your function is total and confirm that it returns correct results for some low argu-
ment values according to https://en.wikipedia.org/wiki/Ackermann_function#
Table_of_values.

1

https://gitlab.cs.ttu.ee/
https://gitlab.cs.ttu.ee/
https://en.wikipedia.org/wiki/Ackermann_function#Table_of_values
https://en.wikipedia.org/wiki/Ackermann_function#Table_of_values


Problem 3
Write (any possible) total functions with each of the following types:

fun1 : (c -> a) -> (c -> b) -> c -> Pair a b

fun2 : Pair (Pair a b) c -> Pair a (Pair b c)

fun3 : Pair a (Either b c) -> Either (Pair a b) (Pair a c)

fun4 : Pair (a -> b) (c -> d) -> Either a c -> Either b d

Problem 4
Write a higher-order function that uses a given function to transform the element at
the specified index of a list:

transform : (f : a -> a) -> (index : Nat) -> List a -> List a

If the index is out-of-bounds for the list then your function should behave like the
identity function. For example:

> transform S 0 [1 , 2 , 3]

[2, 2, 3]

> transform S 1 [1 , 2 , 3]

[1, 3, 3]

> transform S 2 [1 , 2 , 3]

[1, 2, 4]

> transform S 3 [1 , 2 , 3]

[1, 2, 3]

Problem 5
Write a function that capitalizes the first character of each word of a string. For
example:

> titlecase ”it was the best of times it was the worst of times”

”It Was The Best Of Times It Was The Worst Of Times”

You may assume that the words are composed of letters and are separated by whites-
pace. The following standard library functions will be helpful, you should :doc them:

• words : String -> List String,

• unwords : List String -> String,

• unpack : String -> List Char,

• pack : List Char -> String,

• toUpper : Char -> Char.

The functions toUpper, pack and unpack are in the module Prelude, which is
imported automatically by default. The functions words and unwords are in the
module Data.String, which you will need to import in order to use.

tip: you can write this as a one-liner using your function from problem 4, function com-
position, and the prelude function map : (a -> b)-> List a -> List b, which
applies the given function to each element of the given list.

Problem 6
Write the zip function for the type of node-labeled binary trees:

zip_tree : (a -> b -> c) -> Tree a -> Tree b -> Tree c

Note: recall that we met Tree types in lab 3.

2



Problem 7
Write the fold function for Tree types, call it fold_tree. You will need to work
out its type as well as its definition.

Problem 8
Use the fold function for trees that you wrote in problem 7 to rewrite the size

function from lab 3 as a fold.

size : Tree a -> Nat

size = fold_tree ?g1 ?g2

Note: your solution should be one line with expressions substituted for the two goals
above. It should contain no case analysis nor recursion, the fold_tree function
should already take care of those things.

3


