
Lab 2

Functional Programming (ITI0212)

2022-02-04

This week we learned about inductive types and recursive functions. Inductive types
are user-defined types with any number of element constructors. These specify the
possible ways of creating elements of the given type, and each may take different
numbers and types of arguments. Recursive functions on inductive types use case
analysis or pattern matching in order to specialize the function being defined for the
possible element constructors. These functions may call themselves using recursive
calls to compute the result for the current case using the results for other cases.

Task 1
An important function in digital circuit design is the xor function, which takes two
Bool inputs and returns True just in case they differ. Write this function in Idris.

Task 2
The two-element type Bool is used to represent the truth or falsity of a proposition.
But sometimes we are not so sure about things. Write a four-element type called
Prob with elements named Definitely, Likely, Doubtful, and Impossible.

Task 3
Write a negation function for Prob,

not : Prob -> Prob

that sends each element in the above list to the corresponding element of the reversed
list (e.g. Definitely ↦ Impossible).

Task 4
Write a conjunction function for Prob,

and : Prob -> Prob -> Prob

according to the following table:
↓ and → Definitely Likely Doubtful Impossible

Definitely Definitely Likely Doubtful Impossible
Likely Likely Likely Doubtful Impossible
Doubtful Doubtful Doubtful Doubtful Impossible

Impossible Impossible Impossible Impossible Impossible

Challenge: try to write this definition using as few clauses as possible.

Task 5
Write the multiplication function for natural numbers.

mul : Nat -> Nat -> Nat

Hint: try using recursion on the first argument.

1



Task 6
The factorial function 𝑛! on the natural numbers can be characterized by the following
recursive specification:

𝑛! = {1 if 𝑛 = 0
𝑛 × (𝑛 − 1)! otherwise.

Turn this recursive mathematical specification into a recursive function definition in
Idris:

fact : Nat -> Nat

Task 7
Extend the Shape type from lecture 2 by adding a constructor to represent a regular
𝑛-sided polygon with a specified side-length:

RegularPolygon : (sides : Nat) -> (length : Double) -> Shape

Task 8
Write a function called perimeter that returns the linear distance along the bound-
ary of a shape.

Hint: it may help to recall the Pythagorean theorem and to :search for functions
from Double to Double and from Nat to Double.

2


