
Lab 3

Functional Programming (ITI0212)

2022-02-11

Brief recap: Parameterized types are types that depend on one or more types. For
example we saw the parameterized types List, Pair, Maybe. Their type construc-
tors have function types of the form Type -> Type, Type -> Type -> Type, etc.
Lowercase names are type-level variables representing parameters, and are elaborated
by Idris as implicitly-bound arguments. Parameterized types can be considered as
defining an (infinite) family of types, one for each choice of parameter type(s).

Generic functions are functions whose type signatures involve parameterized types.
They are parametrically polymorphic: their behaviour has no capacity to differ ac-
cording to the type of their parameter(s). Sometimes this means there is only one
way to implement a generic function of a given type signature, which is helpful both
to the human programmer, and Idris’ proof search functionality.

Task 1
To implement a generic function:

swap : Pair a b -> Pair b a

Task 2
To implement two generic functions:

inl : a -> Either a b

inr : b -> Either a b

Consider : is there more than one possible implementation for the functions in tasks
1 and 2?

Task 3
To implement a generic function that reverses a list (e.g. reverse’ [1,2,3] =
[3,2,1]).

Note: since reverse is already defined in the standard library, use a different name
such as reverse’ for your function.

Hint: you may wish to make use of the concatenation function (++) from Idris’
standard library.

Definition
A node-labelled binary tree is a data structure that holds values of some type at its
branch nodes.

We can define the type of binary trees as a parameterized type:

1



data Tree : Type -> Type where
Leaf : Tree a
Branch : (left : Tree a) -> (val : a) -> (right : Tree

a) -> Tree a

This says that a Tree a is either a Leaf, or a Branch (a left “sub-tree”, a term of
type a and a right “sub-tree”).

Note: we have given names (left, val, right) to our parameters for the Branch
element constructor. This both improves readability of the code and provides clearer
default names when case-splitting (try it in the next task!)

For example, consider the following term of type Tree Integer:

Branch (Branch Leaf 1 (Branch Leaf 3 Leaf)) 5 Leaf

We can mentally picture this term as the following node-labelled tree:

5
/ \

1 *
/ \

* 3
/ \

* *

Task 4
To implement a generic function size : Tree a -> Nat, returning the number of
values stored in a tree. For example, the size of the tree given in the above definition
is 3.

Note: you will need to copy the above parameterized type Tree into your file, since
this is not in Idris’ standard library.

Hint: your function needs only two clauses.

Task 5
To implement a generic function flatten : Tree a -> List a, returning a list con-
taining the values stored in a tree.

Task 6
To implement two functions:

nat_to_list : Nat -> List Unit

list_to_nat : List Unit -> Nat

that are mutually inverse, i.e.

nat_to_list (list_to_nat x) = x

and

list_to_nat (nat_to_list y) = y

for all x : List Unit, y : Nat.

For now, you can check your functions are mutually inverse by trying a few cases in
the REPL. Later in the course we will see how to prove (using Idris) that they are
mutually inverse!

We say that these functions witness a type isomorphism between List Unit and Nat.

2


