
Lab 4

Functional Programming (ITI0212)

2022-02-18

This week we learned about function literals and higher-order functions. We can refer
to the function with formal parameter x and body t using the (ASCIIfied) λ notation
\ x => t. For example, the generic identity function can be written as \ x => x.

A higher-order function is a function that traffics in other functions, either by taking
them as arguments or by returning them as results. We saw how the map and filter
functions for List types allow us to perform tasks that would typically be done in
imperative programming languages using loops, and how the fold function for an
inductive type lets us capture its recursion principle as an ordinary function.

You can use the filter function for Lists in the standard library by importing
Data.List in your script file.

Task 1
Before consulting Idris, work out for yourself the types and values of the following
two expressions.

(map S . filter even)[0, 1, 2, 3]

(filter even . map S)[0, 1, 2, 3]

Then check your understanding by asking Idris to evaluate them for you.

Task 2
Write the map function for Maybe types:

map_maybe : (a -> b) -> Maybe a -> Maybe b

so that

Lab4> map_maybe S Nothing
Nothing
Lab4> map_maybe S (Just 41)
Just 42

Task 3
Use a function literal (λ-expression) to complete the following function that returns
the numbers in a list that are multiples of 10:

round_numbers : List Integer -> List Integer
round_numbers = filter ?p

For example:

Lab4> round_numbers [5,10,15,20]
[10, 20]

Hint: the functions mod and (==) will be helpful.

1



Task 4
Use the fold for List types to complete the following function that adds together
all the numbers in a list:

sum_list : List Integer -> Integer
sum_list = fold_list ?c ?n

so that

Lab4> sum_list [1,2,3]
6
Lab4> sum_list []
0

Task 5
Write the fold function for the Bool type, fold_bool.

• First determine the type of this function using the algorithm described in the
lecture.

• Then write the function definition using the algorithm for that.

Up to argument order, you should recognize this function as a construct present in
nearly every programming language, what is it? Idris also supports the conventional
syntax for this construct, try it out.

Task 6
Write the fold function for Maybe types, fold_maybe.

Task 7
Rewrite the map function for Maybe types from task 2 as a fold:

map_maybe’ : (a -> b) -> Maybe a -> Maybe b
map_maybe’ f = fold_maybe ?g1 ?g2

2


