
Lab 6

Functional Programming (ITI0212)

2022-03-04

This week we met indexed types, also known as dependent types. These are type
constructors that produce types that are indexed by or dependend on elements of
another type. We met the bounded natural number types Fin n and the lengthed-
list types Vect n a, both of which are indexed by natural numbers. We also met
the dependent pair types DPair a b, in which the second factor b is indexed by the
first factor a.

We saw that dependent types let us write more precise specifications for functions,
which can be used to eliminate run-time errors such as index-out-of-bounds for finite
sequences. We also saw that the use of dependent types can sometimes make functions
easier to write by reducing the space of well-typed programs, sometimes to such an
extent that Idris can write the function definitions for us.

Despite this, dependent types are not a panacea. While they make some programming
tasks easier, they make others harder. Dealing with this new complexity is a topic that
we will return to throughout the rest of the course. This week we will content ourselves
with gaining familiarity with some basic indexed types and dependent functions.

For this lab you will need to import Data.Fin and Data.Vect.

Task 1
Write a type isomorphism between the types Bool and Fin 2; that is, write functions

bool_2_fin : Bool -> Fin 2

and

fin_2_bool : Fin 2 -> Bool

such that composing them in either order does the same thing as the identity function:

Lab6> (fin_2_bool . bool_2_fin) False
False
Lab6> (fin_2_bool . bool_2_fin) True
True
Lab6> (bool_2_fin . fin_2_bool) 0
FZ
Lab6> (bool_2_fin . fin_2_bool) 1
FS FZ

Challenge: how many such type isomorphisms are there?

Task 2
Write the map function for Vect types,

map_vect : (a -> b) -> Vect n a -> Vect n b

or better yet, let Idris write it for you.

1

Task 3
Sometimes we encounter partial functions, that is, functions that are undefined for
some inputs. For example, division on the rational numbers is not defined when
the second argument is 0. There are two canonical strategies for totalizing a partial
function.

expand the codomain: replace the result type of the function with a “bigger” one
that contains new elements to receive arguments on which the partial function
is undefined. For example, some languages add a NAN (not-a-number) value to
numerical types to accommodate zero-division.

restrict the domain: replace the source type of the function with a “smaller” one
that does not contain the elements on which the partial function is undefined.
For example, we could create a type of non-zero numbers and use that for the
second argument to division.

The first element of the sequence is called its head. However, head is generally a
partial function because there is no first element of an empty sequence.

(i) Define a total head function for Vect types by expanding the codomain:

head_e : Vect n a -> ?G1 a

(ii) Define a total head function for Vect types by restricting the domain:

head_r : Vect ?G2 a -> a

Task 4
Write a function called indPair that converts a (non-dependent) Pair to the DPair
with the same factors. For example:

> indPair (True , 1)
(True ** 1)
> indPair (3.14 , ())
(3.14 ** ())

Task 5
List types and Vect types are both finite sequence types, made from constructors
called Nil and (::), and sharing the same syntactic sugar in the form of bracket
notation, [x, y, ...]. Informally, we can think of a Vect as a List that knows
its length.

Forgetting things is usually pretty easy. Write a function that converts a Vect into
the List containing the same elements in the same order.

forget_length : Vect n a -> List a

Learning things is often a little harder than forgetting them. Write a function that
converts a List into the Vect containing the same elements in the same order.

learn_length : (xs : List a) -> Vect ?n a

Hint: learn_length will need to be a dependent function. Recall that Idris’ func-
tion type constructor lets us use the value of the argument when determining the type
of the result. It may be useful to :set showtypes in the REPL to help distinguish
Vects and Lists.

2

