
Lab 8

Functional Programming (ITI0212)

2022-03-18

This week we saw interfaces, which are a collection of methods, representing the
notion of a family of types with common operations (e.g. “numeric types”, whose
values we expect to be able to add and multiply). Interfaces may be parameterized,
which allow us to provide different implementation for different types.

Interfaces may be used to constrain generic functions, other interfaces, and imple-
mentations of interfaces.

The Idris standard library defines many useful interfaces such as Num, Show, Eq, Ord,
Cast, etc. We can also define our own interfaces and provide implementations of
any interface. Implementations may not overlap, but we can use named interfaces to
provide multiple implementations.

Comparing Strings
The default Ord implementation for Strings compares them lexicographically, that is
according to dictionary order – but also with uppercase letters coming before lowercase
(thus "A" < "a" evaluates to True).

Task 1
Write a named Ord implementation for Strings that compares them according to
their length:
implementation [len] Ord String where

Note: if you choose to implement the < method, you will need to use the prefix syntax
to call the named implementation, e.g. (<) @{len} "a" "ab".

Comparing Lists
The default Eq implementation for Lists compares them pointwise, that is, two lists
are considered equal if they have the same elements in the same order:

> the (List Nat) [1 ,2 ,3] == [3 ,2 ,1]
False
> the (List Nat) [1 ,2 ,3] == [1 ,2 ,3 ,3]
False
> the (List Nat) [1 ,2 ,3] == [1 ,2 ,3]
True

For the following task you will need to import Data.List.

Task 2
Write a named Eq implementation for lists that compares them setwise:
implementation [setwise] Eq a => Eq (List a) where

1

that is, two lists should be considered equal if each element that occurs (at least once)
in one of the lists also occurs (at least once) in the other:

> (==) @{ setwise } [1 ,2 ,3] [3 ,2 ,1]
True
> (==) @{ setwise } [1 ,2 ,3] [1 ,2 ,3 ,3]
True
> (==) @{ setwise } [1 ,2 ,3] [1 ,2 ,4]
False

Hint: the following functions may be useful:

• elem : Eq a => a -> List a -> Bool

• all : (a -> Bool)-> List a -> Bool

Preorders
The Ord interface from the standard library allows us to implement total orders on
the values of a type: an implementation of Ord for a given type allows us to compare
any two values of that type.

A preorder is a more general order relation, which is simply a binary predicate ¤,
having the properties of reflexivity (@x, x ¤ x) and transitivity (@xyz, x ¤ y ^ y ¤
z ùñ x ¤ z).

Later in the course we will see how to specify these properties in Idris, but for this
lab a preorder is just a binary predicate whose implementations we should manually
ensure to be reflexive and transitive.

For example, “divides” defines a preorder on the natural numbers: we write n ¤ m
for “n divides m”.

Task 3
Write an interface PreOrd for preorders and implement the “divides” preorder on
Integer. Convince yourself that your implementation is reflexive and transitive.

Hint: you may find the mod function useful, where mod n m is the remainder when
dividing n by m.

Task 4
Recall the type of arithmetic expressions from the lecture:

data AExpr : Num n => Type -> Type where
V : n -> AExpr n
Plus : AExpr n -> AExpr n -> AExpr n
Times : AExpr n -> AExpr n -> AExpr n

Write an implementation of Show for AExpr n that displays arithmetic expressions in
infix notation and fully parenthesized, e.g. show (Plus (V 2)(Times (V 3)(V 0)))
should evaluate to (2+(3*0)).

Hint: your implementation will need more than one constraint.

2

