Lab 9

Functional Programming (IT10212)

2022-03-25

This week we saw record types, which are types that gather together a bunch of
related fields, provide a convenient syntax for manipulating what we might otherwise
implement as “types with one constructor” or iterated dependent pairs.

Defining a record gives us field projection functions defined in the namespace of the
record, and field “update” functions which allow us to create new records from existing
ones using a convenient syntax. This syntax also allows access and “update” of fields
of records nested within records.

Task 1

Records could be used to represent posts on a social media site. Write a record Votes
that can store a count of likes and dislikes, and a record Post that has a field for
votes (nesting the Votes record), along with fields for the title and URL.

Task 2
Write a function 1ike : Post -> Post that increases the number of likes of a post
by one.

Task 3
Write a function score : Post -> Integer that calculates the score of a post as the
number of dislikes subtracted from the number of likes.

Task 4
Consider a type of vehicles

data Vehicle : Type where
Bike : Vehicle
Car : Vehicle
Plane : Vehicle

(extend this however you wish).

Write a function max_speed : Vehicle -> Nat that associates a maximum speed
(in arbitary units) to each kind of vehicle.

Write a parameterized record type

record VehicleSpec (kind : Vehicle) where

for specifications of vehicles, parameterized by a type of vehicle. This should include
fields for name, speed, year of manufacture, but a vehicle must not be able to go

faster than the max_speed of its kind: the type of the speed field must depend on the
kind parameter.

Recall: you may use the Fin type from Data.Fin to represent numbers strictly less
than a bound.



Task 5
A finite indexed family of types can be specified by a term of type Fin n -> Type:
for each index i, such a function gives us a type at that index.

The task is to implement a record that represents the disjoint union of such a family
of types. It should have three fields: a finite indexed family of types, an index, and a
value of the type at that index.

Such a disjoint union is like a generalization of the Either type: where Either
disjointly unites two types, a disjoint union unites all the types in a finite family.



