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This week we talked about data, codata and the notions of totality pertinent to each.

A function producing data is total if it is covering and terminating. Covering means
there must be a pattern-match provided for every constructor of the input inductive
type. Terminating means the function must finish computing within a finite time.

Idris can mechanically check coverage, but not termination (halting problem) so it uses
a (syntactic) approximation to termination which is that recursive calls on inductive
arguments must occur on proper subterms of those arguments.

Codata is potentially infinite data. We can build co(inductive) data types by us-
ing the Inf keyword to mark arguments of constructors as potentially infinite. To
construct something of type Inf a, we use the Delay constructor, which prevents
eager evaluation of arguments to functions/constructors which could otherwise cause
non-termination. Idris can automatically insert Delays for us.

A function producing codata is total if it is covering and productive. Productive means
that the function will produce a non-empty finite prefix of a potentially infinite output
in a finite time. Again this is undecidable, so Idris uses a syntactic approximation that
can detect some but not all productive functions: recursive calls must be immediate
subterms of value constructors for codata (and so guarded by a Delay).

A function that is not total (in either sense above) is called partial. Partial functions
may cause crashes (non-covering) or hangs (non-productivity or non-termination) at
runtime, so it’s good to know when your functions are total! However, there are some
limitations to Idris’ totality checker, and human ingenuity may be required.

Task 1
Write the addition function for CoNats:

add : CoNat -> CoNat -> CoNat

Make sure that Idris recognizes it as total.

Note: You will need to copy the definition of CoNat from Lecture 10.

Task 2
Write the multiplication function for CoNats:

mul : CoNat -> CoNat -> CoNat

You can assume that n�0 � 0 � 0�n for any CoNat n. Your function does not need
to be total, we will return to this in Task 7.

Task 3
Write the bounded subtraction function for CoNat (bounded in the sense that sub-
tracting from Zero should yield Zero)

minus : CoNat -> CoNat -> CoNat
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No definition of the bounded subtraction function for CoNat can be total, why not?

Write a term, minus ?conat1 ?conat2 that will not yield a result in any finite
amount of time.

Task 4
Write the length function for Colists:

length : Colist a -> CoNat

Make sure that Idris recognizes it as total.

Task 5
Write the filter function for Colists:

filter : (a -> Bool) -> Colist a -> Colist a

No definition of filter for Colist can be total, why not?

Write a term filter ?pred ?stream that will not yield a term in a finite time.

Task 6
The hailstone function h : Integer -> Integer is n

2 if n is even, and 3n� 1 if n is
odd.

h : Integer -> Integer
h n = case (n ‘mod ‘ 2 == 0) of

True => n ‘div ‘ 2
False => (3 * n) + 1

The hailstone sequence for a given n is the sequence [n, h n, h (h n), ...], ter-
minating if we reach 1 (or 0, in the case n � 0).

Implement the hailstone sequence

hail : Integer -> Colist Integer

It is currently unknown whether this sequence is finite for every n (Collatz conjecture)!

Your function should be total: why does this not mean that it solves the Collatz
conjecture?

Task 7
Rewrite the mul function from Task 2 to be total. Your function will need at least
three cases.

Idris may not recognize it as total, because likely your recursive calls will be not
directly guarded by a coinductive value constructor, but rather the coinductive value
constructor will guard a total function of the recursive call - but we know that this
preserves totality.

If your function is total, mul infinity infinity should evaluate in finite time.
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