
Lab 11

Functional Programming (ITI0212)

2022-04-08

This week we learned about programming with dependent types. We saw how to
write expressions that compute the types of other expressions, including the type of
the filter function for Vect types and that of the printf function. In order for
an expression to compute in a type it must be total, and if it is defined in a different
module then it must have visibility public export.

If we want to perform case analysis on an expression of an inductively defined type
and we need occurrences of that expression to be specialized to a constructor form
then we can use a with pattern, which is like a case expression, except that it occurs
on the left side of a definition clause.

A useful technique for writing recursive functions is to use an accumulator, which is
an additional argument that keeps track of how the value computed by a function
changes with each recursive call. The value of the accumulator is then used to compute
the result when a base case is reached.

Task 1
Write the ternary boolean majority function, which returns the Bool that occurs
most often among its arguments, and whose type can be written using the ary_op
type constructor from lecture:

majority3 : 3 ‘ary_op‘ Bool

Task 2
There is a similar majority function that takes a list of booleans as an argument (for
concreteness, ties go to True).

list_majority : List Bool -> Bool

Write this function is such a way that it makes exactly one pass over its argument list,
which is optimal. Note that functions like length, filter, count (or accepts)
each make one pass over a list, as you can confirm by :printdefing them.

Hint: Like in the definition of format_function from lecture, you can use a helper
function that takes an additional accumulator argument that keeps track of what you
know about the majority so far. When you reach the base case of an empty list you
can use the state of this accumulator to decide which boolean wins.

As a bonus, your function will most likely be tail recursive, which means that it can
run in constant space on a stack-based interpreter.

Task 3
Generalize the ary_op type constructor so that the argument and result types can
be arbitrary:

infixr 6 >->
(>->) : (args : Vect n Type) -> (result : Type) -> Type

1



Here the infixr declaration means that we can write this as an infix operator that
defaults to right-association. The number describes the precedence of this operator
with respect to other operators.

The (>->) type constructor should take a vector of argument types and a result type
and return the type of (curried) functions from the argument types to the result type.
For example:

Lab11> [] >-> Nat
Nat
Lab11> [Nat] >-> Nat
Nat -> Nat
Lab11> [Nat , Bool] >-> Nat
Nat -> Bool -> Nat
Lab11> [Nat , Bool , String] >-> Nat
Nat -> Bool -> String -> Nat

Test your definition by using it to describe the types of some functions, such as:

seven : [] >-> Nat
seven = 7

is_even : [Nat] >-> Bool
is_even Z = True
is_even (S n) = not $ is_even n

compose : [(a -> b) , (b -> c)] >-> (a -> c)
compose f g x = g (f x)

Task 4
Rewrite the ary_op type constructor as an instance of the (>->) type constructor,
i.e. complete the following definition:

ary_op’ : (n : Nat) -> Type -> Type
n ‘ary_op’‘ a = ?args >-> ?result

Hint: :search (n : Nat)-> a -> Vect n a

Task 5
Modify the printf function from lecture so that it accepts ”%f” as a formatting
directive that specifies an argument of type Double.

Hint: you need to add only four lines.

This should let you write expressions like

Lab11> printf ”pi is approximately %f” pi
”pi is approximately 3.141592653589793”
Lab11> printf ”the square root of 2 is approximately %f” (sqrt 2)
”the square root of 2 is approximately 1.4142135623730951”

2


