
Lab 12

Functional Programming (ITI0212)

2022-04-15

String manipulation with Semigroup and Monoid
Implementing the Semigroup interface for a type a allows us to “merge” two values
of type a with the function (<+>) : a -> a -> a. If a also implements Monoid, we
have access to a value neutral : a that doesn’t influence what it is merged with.

In the tasks below, you will define functions that generalize functions for string-
manipulation to arbitrary typess with implementations of Semigroup or Monoid.

Task 1
Define a function repeat that takes a natural number n and a value x : a, and repeats
x n times using (<+>). For any argument x : a, repeat 1 x should evaluate to x.
Decide yourself whether it is enough to constrain repeat to types with a Semigroup
implementation, or whether Monoid is required. (Hint: What should repeat 0 x
evaluate to?)

Examples: If the type a is the natural numbers, repeat should add a natural number
n times to itself:1

> repeat 6 (the Nat 7)
42

For strings, it should return repetitions of the input:

> repeat 3 "na"
" nanana "

Task 2
Write a function intersperse, generic over some Monoid a, that returns the al-
ternating application of (<+>) to a separator sep : a and the elements of a list
xs : List a.

When a is String, the function should concatenate a list of strings, with a separator
interspersed:

> intersperse ", " ["A", "comma", " separated ", " string "]
"A, comma , separated , string "

Note that there is no trailing sep in the above output!

Hint: This function is very similar to the function concatenate defined during
lecture 12.

Task 3
Combine the above functions to reproduce the following string:

1Assuming you define Monoid Nat as done in the lecture.

1

poetry : String
poetry = """

Na Na Na Na Na Na Na Na Batman !
Na Na Na Na Na Na Na Na Batman !
Batman ! Batman ! Batman !
"""

The above string literal is a multiline string that includes newline characters ("\n").

A broken Functor
Consider the following datatype, which contains a counter and some value:

record Counter (a : Type) where
constructor MkCounter
counter : Nat
value : a

Task 4
This implementation of Functor Counter keeps track of how often map was called:

implementation Functor Counter where
map func (MkCounter counter value) =

MkCounter (counter + 1) (func value)

Why is it not a valid implementation? Which functor laws does it violate?

Parallel computation with Vect n
Task 5
Give an implementation of Functor for Vect n where map applies a function to all
elements of the vector.

A value of type Vect n (a -> b) can be seen as n computations happening in paral-
lel. Implement Applicative so that (<*>) “executes” these computations in parallel.

Hint: n : Nat must appear as a non-erased parameter, like so:

implementation {n : Nat} -> Applicative (Vect n) where

The List monad
Task 6
In the lecture, we hinted at an implementation of Monad for List given by the standard
library. Ignore this fact and write an implementation like this yourself:

implementation [Mine] Monad List where

You may make use of the implementations of Functor and Applicative for List as
provided by the standard library.

Functions a -> List b can be seen as non-deterministic functions, returning many
possible values of type b. Your definition of (>>=) (or join) should reflect that. For
example, the definition2

2Ignore the line let %hint = ..., this is an unfortunate hack necessary to convince Idris to use
the implementation named Mine instead of the default implementation.

2

https://idris2.readthedocs.io/en/latest/reference/strings.html#multiline-string-literals

list_example : List String
list_example =

let %hint m : ?; m = Mine in
do

x <- [" foo" , "bar "]
y <- ["1" , "2"]
pure $ x ++ y

should evaluate to

Lab12 > list_example
[" foo1", "foo2", "bar1", "bar2 "]

3

