Lab 13

Functional Programming (IT10212)

2022-04-22

Indexing lists

During the lecture, we started encoding properties of lists as indexed types. We’ll
continue by defining a type that allows us to access the elements of a list by their
index.

In imperative programming languages, a list of n + 1 values is presented as an expres-
sion

xs = [X0,...,Xn]
and the value x;, is called the element at index k. Importantly, only numbers k < n
are valid indices into xs, and we call them in bounds. The indices n + 1,n + 2,...

are “out of bounds”, since they do not refer to elements of the list. Lists are called
“0-indexed” as the first element of a non-empty list has index 0.

In Idris, lists are defined inductively, so we do not immediately have access to the
element at the kth index of a list. Instead, the standard library defines a function
that traverses a list until it finds the correct element to return:

getAt : (k : Nat) -> List a -> Maybe a
getAt 0 (x :: xs) = Just x

getAt (S k) (x :: xs) = getAt k xs
getAt _ [] = Nothing

Note that this function returns Just x if k is in bounds, but Nothing if it is out of
bounds.

In this exercise, well will define a function

at : (k : Nat) -> (xs : List a) -> IsInBounds k xs -> a

that returns the kth element of a list xs, given a proof that k is a valid index into xs.
In comparison to getAt, this does return an element directly, no Maybe a necessary!

Note
Before writing any other code, make sure that all of your definitions are only accepted
by the type checker if they are total. Put this directive at the top of your file:

%default total

In particular, this ensures that your proofs cover all the necessary cases!

Also, complete task 1 and 2 first; task 3 and 4 are independent of each other.

Task 1
Now, we encode the proposition “k is an in-bounds index into xs”. For this, complete
the following type definition:

data IsInBounds : (k : Nat) -> (xs : List a) -> Type where

Since this type depends on inductive types Nat and List a, try to come up with a
similar inductive definition:

o Cover one or more obvious base cases. What are the indices of the empty list?
What’s the shape of lists that have index 07

o Add case(s) to construct proofs for bigger indices or lists. Assuming you have
an in-bounds index, can you prove its an index to another (bigger) list? Can
you change the index so that it remains in-bounds?

SX :: X IOJ Spunoq-ul st ¥ § uay) ‘sx
I0J SpPUNOQ-ul ST ¥ JI,, SARS JRI[) U0 pur ‘ IS figdwa-uou Aue I0J SPUNOJ-UI SI (), sAes
1R} 9U() :SIOJDILIJSUOD OM) 9ART] P[NOTS odA) INOX "YoNIs oIe NOA JI SIY) PeY JULE

Task 2
As a warm-up, define a total function that returns the head of a list, i.e. the element
at index 0:

head : (xs : List a) -> (in_bounds : IsInBounds 0 xs) -> a

"IOUI[-9UO & SIY) 9eW [[IM SpUnoq uT uo Surjrds-ose)) Juify

The function should do the obvious thing:

Lab13> head [1, 2, 3] ?proofl
1

Lab13> head [’a’, ’z’] 7?proof2
7aJ

Of course you’ll have to come up with the proofs ?proofl and ?proof2 yourself, as
they’ll depend on your definition of IsInBounds.

Task 3
Write the function that returns elements of a list by index, given a proof that the
index is in-bounds:

at : (k : Nat) -> (xs : List a) -> IsInBounds k xs -> a

Of course, at 0 should behave like head, and for other indices it should do the
expected thing:

Lab13> at 2 [1, 2, 3] ?proofl

3

Lab13> at 1 [’a’, ’z’] ?proof2
7z)

Again, you’ll have to provide proofs to call the function.

Task 4
Prove the following lemma concerning the predecessor of an index: If k + 1 is an
index into xs, then k is also an index into zs.

‘degs auo Ul eS| |1}
ano1d 09 yeyy) os() sisey[0d AT UOIONPUL B[] UTRIGO 0} UWLID)-(NIS B 0] PBIJSPUNOGUIST
Adde AJeAIsInooI ‘9sed puodes o) 9A0Id OF, "Ases AIOA ST JSI1 oY], ‘SoSed 0M]) Ul J[NSI
pmoys jeyJ, Juewmsgie jooxd oY) uo jryds-esed ‘siy) oaoxd o) SUIAI) ¥onjs oIe NOA I

sX ¥ spunoguls] <- SX (3 §) spunoguIs <-
(e 2STT : SX) <- (23BN : ¥) : peIdspunogulst

st uorytsodoad siyy 10} oanjeusis odAy oy [, [July

Elements of a list

In this exercise, we will focus on proving that certain terms are elements of a list.
This task will be less guided than the previous task; use it to check whether you can
translate natural language definitions into precise type definitions yourself. All tasks
after 5 can be solved independently of each other.

Task 5
Given a value x : a and a list xs : List, define a type IsElem x xs that has a
term if and only if x is an element of xs.

Check your definition by proving
example_elem : 5 ‘IsElem‘ [3, 5]

oaxoym odAl <- (® 2STT : SX) <- (e : X) : WOTHSI ®BIEP
QINJRUSIS 1M ol sIy) ‘odA) poxopur ue o urese pmoys odAy oy T, July
Task 6
Prove that the singleton list [x] contains the element x.
[X] X waTHSI <- (® : X) : UO3O9TSUTISWSTHST
:uorysodoad sty 103 aanjeusts odA) e s oIy ULy
Task 7

Given a proof IsElem x xs, write a function index0f that computes the index at
which x occurs in xs.

Optionally, combine this with IsInBounds and prove that the index of an element in
a list is in-bounds for that list:

isInBoundsIndex0f : (is_elem : IsElem x xs)
-> IsInBounds (index0f is_elem) xs

Task 8
Prove that given any function £ : a -> b, if x is an element of xs, then f x is an
element of map f xs.

'SX X weTHsT Jo sjooid uo uoronpul Aq jooid auI[-0M9) ® ST SIYT, JUL

Task 9
If you know that a list contains, you can remove precisely that element from the list.
Write a function

dropElem : (xs : List a) -> IsElem x xs -> List a

that returns a the list with x removed from xs.

