
Lab 13

Functional Programming (ITI0212)

2022-04-22

Indexing lists
During the lecture, we started encoding properties of lists as indexed types. We’ll
continue by defining a type that allows us to access the elements of a list by their
index.

In imperative programming languages, a list of n ` 1 values is presented as an expres-
sion

xs “ rx0, . . . , xns

and the value xk is called the element at index k. Importantly, only numbers k ď n
are valid indices into xs, and we call them in bounds. The indices n ` 1, n ` 2, . . .
are “out of bounds”, since they do not refer to elements of the list. Lists are called
“0-indexed” as the first element of a non-empty list has index 0.

In Idris, lists are defined inductively, so we do not immediately have access to the
element at the kth index of a list. Instead, the standard library defines a function
that traverses a list until it finds the correct element to return:

getAt : (k : Nat) -> List a -> Maybe a
getAt 0 (x :: xs) = Just x
getAt (S k) (x :: xs) = getAt k xs
getAt _ [] = Nothing

Note that this function returns Just x if k is in bounds, but Nothing if it is out of
bounds.

In this exercise, well will define a function

at : (k : Nat) -> (xs : List a) -> IsInBounds k xs -> a

that returns the kth element of a list xs, given a proof that k is a valid index into xs.
In comparison to getAt, this does return an element directly, no Maybe a necessary!

Note
Before writing any other code, make sure that all of your definitions are only accepted
by the type checker if they are total. Put this directive at the top of your file:

% default total

In particular, this ensures that your proofs cover all the necessary cases!

Also, complete task 1 and 2 first; task 3 and 4 are independent of each other.

Task 1
Now, we encode the proposition “k is an in-bounds index into xs”. For this, complete
the following type definition:

1

data IsInBounds : (k : Nat) -> (xs : List a) -> Type where
-- ...

Since this type depends on inductive types Nat and List a, try to come up with a
similar inductive definition:

• Cover one or more obvious base cases. What are the indices of the empty list?
What’s the shape of lists that have index 0?

• Add case(s) to construct proofs for bigger indices or lists. Assuming you have
an in-bounds index, can you prove its an index to another (bigger) list? Can
you change the index so that it remains in-bounds?

Hint:Readthisifyouarestuck.Yourtypeshouldhavetwoconstructors:Onethat
says“0isin-boundsforanynon-emptylist”,andonethatsays“ifkisin-boundsfor
xs,thenSkisin-boundsforx::xs”.

Task 2
As a warm-up, define a total function that returns the head of a list, i.e. the element
at index 0:

head : (xs : List a) -> (in_bounds : IsInBounds 0 xs) -> a

Hint:Case-splittingonin_boundswillmakethisaone-liner.

The function should do the obvious thing:

Lab13 > head [1, 2, 3] ? proof1
1

Lab13 > head [’a’, ’z’] ? proof2
’a’

Of course you’ll have to come up with the proofs ?proof1 and ?proof2 yourself, as
they’ll depend on your definition of IsInBounds.

Task 3
Write the function that returns elements of a list by index, given a proof that the
index is in-bounds:

at : (k : Nat) -> (xs : List a) -> IsInBounds k xs -> a

Of course, at 0 should behave like head, and for other indices it should do the
expected thing:

Lab13 > at 2 [1, 2, 3] ? proof1
3

Lab13 > at 1 [’a’, ’z’] ? proof2
’z’

Again, you’ll have to provide proofs to call the function.

Task 4
Prove the following lemma concerning the predecessor of an index: If k + 1 is an
index into xs, then k is also an index into xs.

2

Hint:Thetypesignatureforthispropositionis

isInBoundsPred:(k:Nat)->(xs:Lista)
->IsInBounds(Sk)xs->IsInBoundskxs

Ifyouarestucktryingtoprovethis,case-splitontheproofargument.Thatshould
resultintwocases.Thefirstisveryeasy.Toprovethesecondcase,recursivelyapply
isInBoundsPredtoasub-termtoobtaintheinductionhypothesis.Usethattoprove
thelemmainonestep.

Elements of a list
In this exercise, we will focus on proving that certain terms are elements of a list.
This task will be less guided than the previous task; use it to check whether you can
translate natural language definitions into precise type definitions yourself. All tasks
after 5 can be solved independently of each other.

Task 5
Given a value x : a and a list xs : List, define a type IsElem x xs that has a
term if and only if x is an element of xs.

Check your definition by proving
example_elem : 5 ‘IsElem ‘ [3, 5]

Hint:Thetypeshouldagainbeanindexedtype,thistimewithsignature

dataIsElem:(x:a)->(xs:Lista)->Typewhere
--...

Task 6
Prove that the singleton list [x] contains the element x.

Hint:Here’satypesignatureforthisproposition:

isElemSingleton:(x:a)->IsElemx[x]

Task 7
Given a proof IsElem x xs, write a function indexOf that computes the index at
which x occurs in xs.

Optionally, combine this with IsInBounds and prove that the index of an element in
a list is in-bounds for that list:
isInBoundsIndexOf : (is_elem : IsElem x xs)

-> IsInBounds (indexOf is_elem) xs

Task 8
Prove that given any function f : a -> b, if x is an element of xs, then f x is an
element of map f xs.

Hint:Thisisatwo-lineproofbyinductiononproofsofIsElemxxs.

Task 9
If you know that a list contains, you can remove precisely that element from the list.
Write a function
dropElem : (xs : List a) -> IsElem x xs -> List a

that returns a the list with x removed from xs.

3

