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Logical “and” and “or”
During the lecture, we defined inductive types And p q and Or p q. A term of And
p q consists precisely of a proof of p and of a proof of q. A term of Or p q is either
a proof of p or a proof of q. We also noted that these types are isomorphic to the
types Pair and Either, respectively.

This indicates a shift in perspective: in the propositions-as-types interpretation, a term
(x : Pair a b) can be seen as either a pair of terms, or as a proof of a conjuction
“a and b”. Similarly, whether (x : Either a b) is a term that is either an a or a b,
or a proof of a disjunction “a or b” depends on your perspective.

Task 1
Write functions andToPair, pairToAnd, orToEither and eitherToOr that convert
between those types.

Task 2 (Commutativity of And)
Prove that the logical “and” is commutative: If p and q holds, then q and p holds.
Prove this by giving a definition for

commAnd : And p q -> And q p

and compare it to the function swap, defined in Lab 3, Task 2.

If you feel comfortable giving proofs of equality, you can prove that these functions
are inverses of each other. If not, feel free to skip the next task.

Task 3 (optional)
Giving definitions

invEitherOr :
(x : Either a b) -> orToEither ( eitherToOr x) = x

invOrEither :
(x : Or p q) -> eitherToOr ( orToEither x) = x

and similarly for andToPair and pairToAnd.

Using negation as an assumption
During the lecture, we proved that the successor of an even number is odd. Let us
attempt a (guided proof) of a similar proposition: The successor of an odd number is
even. This proof will be different, since we are given a negation (“n is odd” = “n is
not even”) as an assumption.
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Task 4
Copy the following skeleton of the proof and fill in the necessary holes:

isEvenOddSucc : (n : Nat) -> IsOdd n -> IsEven (S n)
isEvenOddSucc 0 is_odd_0 = ? hole_0
isEvenOddSucc 1 is_odd_1 = ? hole_1
isEvenOddSucc (S (S k)) is_odd_ssk = goal where

ind_hyp : IsEven (S k)
ind_hyp = isEvenOddSucc k $ ? hole_is_odd_k

goal : IsEven (S (S (S k)))
goal = IsEvenSS ind_hyp

Notice that this proof has two base cases, n = 0 and n = 1. Proceed as follows:

1. In ?hole_0, inspect the assumption is_odd_0. Use contradiction to prove
this case.

2. In ?hole_1, inspect the goal. It says that 2 is even, which we can easily prove
directly.

3. The inductive step is different than usual, since we cannot case-split the as-
sumption is_odd_ssk : IsOdd (S (S k)): its type is that of a function, and
function types are not inductively defined!

Nonetheless, can obtain our induction hypothesis by recursively applying isEvenOddSucc
to the subterm k of S (S k). Inspect the hole ?hole_is_odd_k; the goal is to
prove that k is odd. We assume that k + 2 is odd, where is_odd_ssk is of type
IsEven (S (S k))-> Void. Can you compose this assumption with another
function to fill the hole?

Playing with negation
Task 5 (Double-negation introduction)
Prove the principle of double-negation introduction: Given any proposition p, if p
holds (=is provable), then its double-negation ␣p␣pq also holds. The following is the
type signature of this statement:

dni : {p : Type} -> p -> Not (Not p)

Proceed as follows:

1. Add a single clause that contains as many arguments (to the left of =) as possible.

2. Inspect the types of those arguments.

3. Inspect the type of the goal.

4. Combine the arguments to produce a value of the goal type.

Using your editor integration, Idris can do step 1 for you. The integration might even
be able to write the entire proof for you!1

Hint:IfyouareconfusedaboutthenestedNots,rememberthatNotaisdefinedto
bethetypeoffunctionsa->Void.Unfoldingthisdefinition,theproblemsbecomes
todefineafunction

dni’:p->(p->Void)->Void

1Using either the helper expression search or generate definition.
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Task 6 (An impossible task)
Task 5 suggest that the logical converse is also provable: If ␣p␣pq holds, then p
holds, too. This is called the principle of double-negation elimination. Surprisingly,
this statement is unprovable in Idris! You should try it yourself; play around with the
following definition:

dne : {p : Type} -> Not (Not p) -> p
dne = ? dne_prf

You will get stuck. This is because Idris is a model of so-called Intuitionistic logic,
where double-negation elimination is not derivable for arbitrary propositions.

Task 7 (A (surprisingly) doable task)
Although double-negation elimination is not provable for arbitrary types p : Type,
there are some specific types for which it is. An important example of such a case
is when p is itself a negation Not q. This is called the principle of triple-negation
elimination:

tne : {q : Type} -> Not (Not (Not q)) -> Not q

To prove this proposition, try again to introduce as many arguments as possible, then
inspect the context.

Hint:Thisproofisabittrickier,butyoushouldobtaintwoarguments

x:q
f:((q->Void)->Void)->Void

Yourproofshouldlookliketnefx=f?prf.Inspecttheholeandfigureouthow
tousexinthere.
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