Lab 16

Functional Programming (IT10212)

2022-05-13

This week we are learning about decidability and automation in Idris programming.

A decision procedure for a predicate is an algorithm that for each index either produces
a proof that the predicate holds or else a refutation proving that it does not. In Idris
the type constructor for decidability is called Dec with constructors Yes and No.
Additionally, there is an interface for types with decidable equality called DecEq in
the standard library module Decidable.Equality.

A constraint argument (also called an auto-implicit argument) is used to ensure that
some validity condition is satisfied. It is written using the double-shafted arrow =>
and is intended to be found by Idris’s term search mechanism. By default this consists
of using constructors, recursion, and function literals in order to find a term of a given
type, but you may specify additional terms for it to try using the %hint directive.

Recall the type constructor for node-labeled binary trees:

data Tree : a -> Type where
Leaf : Tree a
Node : (1 : Tree a) -> (x : a) -> (xr : Tree a) -> Tree a

In this lab you will write a decision procedure for Tree equality and use it to make
the Tree type an instance of the DecEq interface.

The first three tasks are simple one-liners. Remember that equality types in Idris are
inductively defined with a single constructor called Refl, which relates things only
with themselves.

Task 1
Convince Idris that the type of equalities between leaves and nodes, and the type of
equalities between nodes and leaves, are both empty:

implementation Uninhabited (Leaf = Node 1 x r) where
implementation Uninhabited (Node 1 x r = Leaf) where
Task 2

Convince Idris that two non-empty trees whose root nodes have different labels cannot
be equal:

labels_differ : Not (x1 = x2) ->
Not (Node 11 x1 rl = Node 12 x2 r2)

Task 3
Convince Idris that two non-empty trees with differing left or right subtrees cannot
be equal:

left_trees_differ : Not (11 = 12) -»>
Not (Node 11 x1 rl = Node 12 x2 r2)



right_trees_differ : Not (rl1 = r2) -»>
Not (Node 11 x1 rl = Node 12 x2 r2)

Task 4
Using the functions that you wrote in tasks 1-3, write a decision procedure for Tree
equality, under the constraint that the element type of the trees has decidable equality:

decide_tree_eq : DecEq a => (t1 , t2 : Tree a) -> Dec (t1 = t2)

Hint: Case-split the two argument trees. If they are built from different constructors,
use your result from task 1. If they are both Leafs then they are equal (why?). If
they are both Nodes then compare the labels using your result from task 2 and, if
needed, recurse on the subtrees using your results from task 3.

Task 5
Finally, use the decision procedure that you wrote in task 4 to make the types of trees
whose element types are instances of the DecEq interface themselves instances of the

DecEq interface:

implementation DecEq a => DecEq (Tree a) where



