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CHAPTER 0

A word of introduction

As a general rule, solving an exercise in pure Mathematics, the ability to think
should be rewarded more than correctness; this means that good ideas leading to
wrong answers are more valuable than bad ideas yielding the correct answer.

Category theory follows an even stronger claim: it is based on the belief that
the right answer is useless when found through an unenlightening train of thought;
you should grow accustomed to this philosophy.

Don’t expect all questions to be straightforward. On the contrary, some exercises
are meant to be difficult and just an inch above your level; others are meant to force
you to learn new things.

I am telling you the Truth and (compatibly with my high tendency to make
mistakes) only the Truth; but not the whole Truth.

Figure 1. You are supposed to get your hands dirty.
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Part 1

Mathematics, structurally
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Short introduction. In order to proceed more swiftly to the actual core of
the course, we assume the reader is familiar with at least the basic notions of set
theory: operations on sets (union and intersection of subsets, complement of a
subset, cartesian product of two sets,...) and from time to time also with some
basic axioms of set theory (for example: ‘a set coincides with the collection of its
elements’, in the sense that 𝐴 = 𝐵 has the meaning 𝑥 ∈ 𝐴 ⇐⇒ 𝑎 ∈ 𝐵; and ‘for
every set 𝑋 there is a set 𝑃𝑋 such that 𝑈 ∈ 𝑃𝑋 if and only if 𝑈 ⊆ 𝑋’); once this
unavoidable core has been taken for granted, however, the aim of the first part of
the course is to reconstruct the readers’ knowledge of elementary mathematics in
a tidier, more elegant way –or to be more precise: presenting mathematical ideas
paired with a better rationale of what they are and why they are true.
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CHAPTER 1

Orders and relations

Preliminaries. Given sets 𝐴, 𝐵, we will say that two functions 𝑓 , 𝑔 : 𝐴 → 𝐵

coincide if they assume the same values elementwise; in symbols,

𝑓 ≡ 𝑔 ⇐⇒ ∀𝑎 ∈ 𝐴, 𝑓 (𝑎) = 𝑔(𝑎). (1.1)

This is usually called the extensionality principle for functions.
Let 𝑋 be a set. One of the axioms of set theory asserts that the following

collection
𝑃𝑋 := {𝑈 | 𝑈 ⊆ 𝑋} (1.2)

is a set. It is the set whose elements are exactly all subsets of 𝑋 .1
We can build a correspondence between 𝑃𝑋 and another set: the set whose

elements are all functions 𝑓 : 𝑋 → {0, 1}. In order to define a function

𝑐• : 𝑃𝑋 // 2𝑋 (1.3)

just send𝑈 ⊆ 𝑋 to the function 𝑐𝑈 : 𝑋 → {0, 1} sending 𝑥 to 1 if and only if 𝑥 ∈ 𝑈
(so, since there is no other choice, 𝑐𝑈 (𝑥) = 0 if and only if 𝑥 ∉ 𝑈). The function
𝑐𝑈 is called the characteristic function of the subset𝑈 ⊆ 𝑋 .

Proposition 1.1. The correspondence 𝑐• is a function, and it is a bĳection,
because

• it is injective: when the functions 𝑐𝑈 , 𝑐𝑉 are the same functions (which
means: for every 𝑥 ∈ 𝐴, 𝑐𝑈 (𝑥) = 𝑐𝑉 (𝑥)), then 𝑥 ∈ 𝑈 if and only if 𝑥 ∈ 𝑉 ,
and thus the set𝑈 is equal to 𝑉 ;

1Recall that a subset 𝑈 of 𝑋 is a set with the property that all elements of 𝑈 are also elements of 𝑋:
in symbols,𝑈 ⊆ 𝑋 means the formula

𝑥 ∈ 𝑈 ⇒ 𝑥 ∈ 𝑋.

𝑎

𝑏

𝑐

0

1

Figure 1. A function {𝑎, 𝑏, 𝑐} → {0, 1}: the one sending 𝑎 ↦→ 1,
𝑏 ↦→ 1, 𝑐 ↦→ 0.
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• it is surjective, because given any function 𝑓 : 𝑋 → 2, 𝑓 is the character-
istic function of the set

𝑓←(1) := {𝑥 ∈ 𝑋 | 𝑓 (𝑥) = 1}. (1.4)

Exercise or.1□ Fill in the details in the proof of Proposition 1.1 above. Draw
a picture of all functions {𝑎, 𝑏, 𝑐} → {0, 1} and verify that they are 8 = 23, as
expected.

Exercise or.2□ Solve the same exercise, but backwards: induce from a series of
specific examples. If the function 𝑓 : {𝑎, 𝑏, 𝑐} → {0, 1} of Figure 1 is represented
as the triple (110), to denote the fact that the image of 𝑎 under 𝑓 is 1, the image of
𝑏 under 𝑓 is 1, and the image of 𝑐 is 0, explain (in words) what’s the meaning of
the following sentence:

Here’s a list of all functions {𝑎, 𝑏, 𝑐} → {0, 1}:

(000) (100) (010) (001) (110) (101) (011) (111).

Surprisingly enough, the above list is an enumeration of all the numbers from
0 to 7 = 23 − 1, written in base 2.

What can you infer about a similar statement regarding the set of functions
{𝑎, 𝑏, 𝑐, 𝑑} → {0, 1}? What can you infer about a similar statement regarding
the set of functions {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} → {0, 1}? What can you infer about a similar
statement regarding the set of functions {𝑎1, . . . , 𝑎𝑛} → {0, 1}?

The weak point of the above ‘inductive’ approach to discover that the set of all
subsets of 𝐴 is as big as the set of all functions 𝐴 → {0, 1} is that it cannot be
generalised to the case when 𝐴 is infinite: if 𝐴 is finite, say with 𝑛 elements, then
𝑃𝐴 has 2𝑛 elements; but if 𝐴 is infinite, what does 2infinite mean –provided it even
means anything? Cardinal arithmetic is the part of set theory that makes sense of
this statement, and others.

Informally speaking, one of the major achievements of Cantor’s set theory is to
acknowledge the existence of more than one infinite set; and in fact, of something
more: given any infinite, there is a way to build one infinite that is strictly bigger.
(Compare this statement with the following fact of life: given a number 𝑛, there is
a way to build a strictly larger number.)

Definition 1.2. Given a set 𝐴, a function 𝑝 : 𝐴→ {0, 1} is called a predicate
or a proposition; in mathematical discourse, a predicate is a statement you make
about an object 𝐴; a proposition is a statement that you make regarding an object,
and that you are interested in deeming true or false.

The difference between the two concepts is tenuous, and in fact, you model
them mathematically using the same concept: a function 𝐴→ {0, 1}.

Following Proposition 1.1, the predicate/proposition 𝑝 : 𝐴 → {0, 1} defines a
unique subset of 𝐴: the subset of elements of 𝐴 that make the proposition true.

Following standard practice (it is for example very common in programming)
we blur the distinction between the lines of the following table:
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Booleans answers truth values
0 no false

1 yes true

Table 1. Truth values, booleans, binary answers to questions.

Definition 1.3. A bĳection between sets 𝑋,𝑌 is a function 𝑓 : 𝑋 → 𝑌 that is
injective and surjective:

• (injective): if for some 𝑥, 𝑥′ ∈ 𝑋 we have 𝑓 (𝑥) = 𝑓 (𝑥′), then 𝑥 = 𝑥′;
• (surjective): for every 𝑦 ∈ 𝑌 , there exists at least one 𝑥 ∈ 𝑋 such that
𝑓 (𝑥) = 𝑦.

Exercise or.3□ Prove that a function 𝑓 : 𝑋 → 𝑌 is bĳective if and only if
there exists a function 𝑔 : 𝑌 → 𝑋 such that for every 𝑦 ∈ 𝑌 , 𝑓 (𝑔(𝑦)) = 𝑦 and for
every 𝑥 ∈ 𝑋 , 𝑔( 𝑓 (𝑥)) = 𝑥. Such a 𝑔 is called inverse of 𝑓 ; so, 𝑓 is a bĳection if
and only if it has an inverse (we also say that 𝑓 ‘is invertible’).

Notation 1.4. To denote that there exists some unnamed bĳection between
two sets 𝐴, 𝐵 we often write 𝐴 � 𝐵. Other synonyms for ‘there exists a bĳective
function 𝑓 : 𝐴→ 𝐵’ are:

• ‘the set 𝐴 can be identified with 𝐵’;
• ‘the set 𝐴, or equivalently the set 𝐵’, and also
• ‘the set 𝐴, also called the set 𝐵’.

(This remark is a half-joke to convey the idea that if 𝐴 � 𝐵 then the two sets
‘behave the same way’: each property of 𝐴 is also enjoyed by 𝐵 because it can
be ‘transported’ along a bĳection 𝑓 : 𝐴 → 𝐵, and every property of 𝐵 can be
transported along its inverse 𝑓 −1 : 𝐵→ 𝐴.)

Exercise or.4□ Show that if 𝑓 has an inverse 𝑔 as above, 𝑔 is unique. So, we
are allowed to call 𝑔 the inverse of 𝑓 , when it exists.

Exercise or.5□ If 𝑓 is not injective, it cannot be invertible; what is the problem,
exactly? What is the obstruction to define the inverse of 𝑓 ? If 𝑓 is not surjective,
it cannot be invertible; again, where is the problem exactly?

Definition 1.5. A set 𝐴 is called infinite (à la Dedekind) if there exist a proper
subset𝑈 ⊂ 𝐴 and a bĳection 𝑓 : 𝑈 → 𝐴.2

Exercise or.6□ Welcome to the magic, counterintuitive world of infinite sets!
Prove that N = {0, 1, 2, . . . } is infinite à la Dedekind (this was first observed by none
less than Galileo). Prove that Z is infinite à la Dedekind. Write down an explicit
bĳection between N and Z; prove that there exists a bĳection between N and N×N.
Prove that there exists a bĳection between the set N and the set {dis, dat} × N,
defined as

2Note that this definition says when a set is infinite: as counterintuitive as it may seem (because finite
sets are ‘evidently there’ in everyday life, whereas no one can see an infinite one), in Mathematics we
explicitly define infinite sets, and we just say that a set is finite if it is not infinite.
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Figure 2. On the left, a relation 𝐴 = {𝑎, 𝑏, 𝑐} → {1, 2, 3, 4} = 𝐵,
as a correspondence between potatoes; on the right, a function
𝐴→ 𝐵.

{dis, dat} × N := {(dis,0), (dis, 1), (dis, 2), . . . , (dis, 𝑛), . . . ,
(dat, 0), (dat, 1), (dat, 2), . . . , (dat, 𝑛), . . . } (1.5)

Exercise or.7□ (Very hard, but try to chew this diamond). Let 𝐴 be an infinite
set; prove that there exist a subset 𝐸 of 𝐴 and a bĳection 𝑓 : N→ 𝐸 . So, N is the
smallest infinite set, because every other infinite set contains a copy of it.

Definition 1.6. Given sets 𝑋,𝑌 , a relation between 𝑋 and 𝑌 is a subset of
the product 𝑋 × 𝑌 ; a relation on 𝑋 is a relation between 𝑋 and itself. The set
Rel(𝑋,𝑌 ) of all relations between 𝑋 and 𝑌 then is just the set 𝑃(𝑋 ×𝑌 ) � 2𝑋×𝑌 of
all subsets of 𝑋 × 𝑌 .

Exercise or.8□ Show that there exists a bĳection 𝜎 between 𝑃(𝑋 × 𝑌 ) and
𝑃(𝑌 × 𝑋), induced by a bĳection 𝑋 × 𝑌 � 𝑌 × 𝑋 .

Given a relation 𝑅 between 𝑋 and 𝑌 , the opposite relation 𝑅op is the image of
𝑅 ∈ 𝑃(𝑋 ×𝑌 ) under the bĳection 𝜎. The relation 𝑅 and its opposite carry the exact
same amount of information, although formally 𝑅 : 𝑋 → 𝑌 and 𝑅op : 𝑌 → 𝑋 . This
remark is meant to formalise the idea that the existence of a relation 𝑅 between
sets 𝑋,𝑌 is not a ‘directed’ property (compare this with the fact that a function has
instead a specified domain and codomain).

Exercise or.9□ Count how many relations there are on a finite set 𝑋 =

{𝑥1, . . . , 𝑥𝑛}.

From the very definition of the set Rel(𝑋,𝑌 ) it follows that there exists a natural
notion of partial order between relations, defined by 𝑅 ≤ 𝑆 if and only if 𝑅 ⊆ 𝑆;
thus the intersection (resp., union) of an arbitrary number of relations between 𝑋
and 𝑌 is still a relation. Recall that a poset, or a partial order or simply an order
is a set 𝑃 equipped with a relation _ ≤ _ that is reflexive and transitive. A poset
(𝑃, ≤) is thin or skeletal if _ ≤ _ is also antisymmetric, i.e. if

𝑥 ≤ 𝑦, 𝑦 ≤ 𝑥 ⇒ 𝑥 = 𝑦 (1.6)

(i.e. there are no nontrivial ‘equivalent’ element by the equivalence relation 𝑥 ≡ 𝑦
defined as (𝑥 ≤ 𝑦) ∧ (𝑦 ≤ 𝑥)).

Examples of thin posets abound (natural numbers with their usual sequential
order, natural numbers with the divisibility order, subsets of a given set. . . ), as
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examples of non-thin posets abound. In the following, we will not insist particularly
in the difference, and the context (or an easy inspection of the definition) will always
allow to understand whether antisymmetry holds. When no further mention is made,
a poset is meant to be a thin partial order.

Exercise or.10□ Does the poset (Rel(𝑋,𝑌 ), ≤) has a top element, a bottom
element? Define the complementary relation of a given 𝑅 ∈ 𝑃(𝑋 × 𝑌 ).

Exercise or.11□ On the relation between relations and functions. Show that a
function 𝑓 : 𝑋 → 𝑌 is precisely a relation 𝑅 ⊆ 𝑋 × 𝑌 with the property that each
‘𝑥-section’ set 𝑅𝑥 := {𝑦 ∈ 𝑌 | (𝑥, 𝑦) ∈ 𝑅} is a singleton {𝑦} =: {𝑦(𝑥)}.

The set 𝑌𝑋 ⊆ Rel(𝑋,𝑌 ) is the set of all functional relations, i.e. the set of all
relations that are functions.

Let 𝑅 : 𝑋 → 𝑌 be a functional relation. under which condition the relation 𝑅op

is a function?

Exercise or.12□ Let (𝑃, ≤) be a partially ordered set; the Hasse diagram of
𝑃 is the directed graph built in the following way:

• there is a vertex for each element of 𝑃;
• there is an edge 𝑞 → 𝑝 connecting 𝑝 (below) and 𝑞 (below) if 𝑝 ≤ 𝑞 and

there is no 𝑥 ≠ 𝑝, 𝑞 such that 𝑝 ≤ 𝑥 ≤ 𝑞.
Draw the Hasse diagram of the following posets:

• 𝑃 = {𝑎, 𝑏, 𝑐, 𝑑} where 𝑎 ≤ 𝑏, 𝑎 ≤ 𝑐, 𝑏 ≤ 𝑑, 𝑐 ≤ 𝑑;
• 𝑃 = 2𝐴 where 𝐴 = {0, 1}, 𝑃 = 2𝐵 where 𝐵 = {0, 1, 2}, 𝑃 = 2𝐶 where
𝐶 = {0, 1, 2, 3}; do you see a pattern? Generalize.
• 𝑃 is the set of divisors of 60, ordered by the relation 𝑎 ≤ 𝑏 if and only if
𝑏 = 𝑘 · 𝑎 for some 𝑘 ∈ N.

Definition 1.7. An algebraic lattice (𝑋,∧,∨) is a set 𝑋 equipped with binary
operations ∧,∨ enjoying the following properties: for all 𝑎, 𝑏, 𝑐 ∈ 𝑋 ,

• (commutative) 𝑎 ∧ 𝑏 = 𝑏 ∧ 𝑎 e 𝑎 ∨ 𝑏 = 𝑏 ∨ 𝑎;
• (associative) 𝑎 ∧ (𝑏 ∧ 𝑐) = (𝑎 ∧ 𝑏) ∧ 𝑐 and 𝑎 ∨ (𝑏 ∨ 𝑐) = (𝑎 ∨ 𝑏) ∨ 𝑐;
• (absorption laws) 𝑎 ∨ (𝑎 ∧ 𝑏) = 𝑎 and 𝑎 ∧ (𝑎 ∨ 𝑏) = 𝑎.

Exercise or.13□ Prove that from the absorption laws it follows that both ∧ and
∨ are idempotent operations: for all 𝑎 ∈ 𝑋 , one has

𝑎 ∧ 𝑎 = 𝑎 𝑎 ∨ 𝑎 = 𝑎. (1.7)

Exercise or.14□ If (𝑋,∧,∨) is an algebraic lattice, we can define a partial
order relation on 𝑋 by saying that 𝑎 ≤ 𝑏 iff 𝑎 ∧ 𝑏 = 𝑎, or equivalently 𝑎 ∨ 𝑏 = 𝑏;
prove that for every 𝑎, 𝑏, 𝑐 ∈ 𝑋 the following inequalities hold

d1) (𝑎 ∧ 𝑏) ∨ (𝑎 ∧ 𝑐) ≤ 𝑎 ∧ (𝑏 ∨ 𝑐);
d2) 𝑎 ∨ (𝑏 ∧ 𝑐) ≤ (𝑎 ∨ 𝑏) ∧ (𝑎 ∨ 𝑐).

Definition 1.8. An algebraic lattice (𝑋,∧,∨) is called distributive if the
converse inequality in d1 holds.
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Figure 3. A delightfully devilish exercise on order theory.

Exercise or.15□ Prove that the following conditions are equivalent for an
algebraic lattice (𝑋,∧,∨):

• 𝑋 is distributive;
• for every 𝑎, 𝑏, 𝑐 ∈ 𝑋 , 𝑎 ∨ (𝑏 ∧ 𝑐) ≥ (𝑎 ∨ 𝑏) ∧ (𝑎 ∨ 𝑐);
• for every 𝑎, 𝑏, 𝑐 ∈ 𝑋 , (𝑎∧𝑏)∨ (𝑎∧𝑐)∨ (𝑏∧𝑐) = (𝑎∨𝑏)∧ (𝑎∨𝑐)∧ (𝑏∨𝑐).

Exercise or.16□ Let (𝑋,∧,∨) be a distributive lattice with a top and a bottom
element; given 𝑎, 𝑏, 𝑡 ∈ 𝑋 , show that there exists at most one 𝑥𝑏,𝑡 ∈ 𝑋 such that
𝑎 ∧ 𝑥𝑏,𝑡 = 𝑏 and 𝑎 ∨ 𝑥𝑏,𝑡 = 𝑡. Define the complement ¬𝑎 of 𝑎 ∈ 𝑋 in a distributive
lattice to be 𝑥⊥,⊤. Prove or disprove that¬(𝑎∧𝑏) = ¬𝑎∨¬𝑏 and¬(𝑎∨𝑏) = ¬𝑎∧¬𝑏.

Exercise or.17□ Prove that a lattice (𝑋,∧,∨) is distributive if and only if the
following equation is true for every 𝑥, 𝑦, 𝑧 ∈ 𝑋:

(𝑥 ∧ 𝑦) ∨ (𝑦 ∧ 𝑧) ∨ (𝑧 ∧ 𝑥) = (𝑥 ∨ 𝑦) ∧ (𝑦 ∨ 𝑧) ∧ (𝑧 ∨ 𝑥). (1.8)

Exercise or.18□ (One implication of this exercise is easy; the other is devilishly
difficult. See Figure 3.) Prove that a lattice (𝑋,∧,∨) is distributive if and only if
the cancellation properties hold: given 𝑦, 𝑧 ∈ 𝑋 , if there exists 𝑥 ∈ 𝑋 such that
𝑥 ∧ 𝑧 = 𝑦 ∧ 𝑧 and 𝑥 ∨ 𝑧 = 𝑦 ∨ 𝑧, then 𝑦 = 𝑧.

Exercise or.19□ Let (𝑋,∧,∨) be a lattice with a top element ⊤; assume 𝑋 is
totally ordered by the partial order relation associated to the lattice structure, 𝑥 ≤ 𝑦
if and only if 𝑥 ∧ 𝑦 = 𝑥, if and only if 𝑥 ∨ 𝑦 = 𝑦. Define the binary operation
𝑋 × 𝑋 → 𝑋 : (𝑥, 𝑦) ↦→ 𝑥/𝑦 by saying that 𝑥/𝑦 = ⊤ if 𝑥 ≤ 𝑦 and 𝑏 otherwise. Prove
that for every 𝑥, 𝑦, 𝑧 ∈ 𝑋 we have

𝑥 ∧ 𝑦 ≤ 𝑧 if and only if 𝑥 ≤ 𝑦/𝑧. (1.9)

A relation 𝑅 on a set 𝑋 is called

• reflexive if for every 𝑥 ∈ 𝑋 we have (𝑥, 𝑥) ∈ 𝑅;
• symmetric if for every 𝑥, 𝑦 ∈ 𝑋 we have that, if (𝑥, 𝑦) ∈ 𝑅, then (𝑦, 𝑥) ∈
𝑅;
• transitive if for every 𝑥, 𝑦, 𝑧 ∈ 𝑋 we have that, if (𝑥, 𝑦) ∈ 𝑅 and (𝑦, 𝑧) ∈ 𝑅,

then (𝑥, 𝑧) ∈ 𝑅.
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Figure 4. The graph of a relation depicts the subset 𝑅 ⊆ 𝑋 × 𝑋
in the ‘plane’ 𝑋 × 𝑋 . Here you see the graph of a few relations on
the set N, in different colours.

Exercise or.20□ Describe the structure of the set rRel(𝑋) of reflexive relations
on 𝑋 , of the set sRel(𝑋) of symmetric relations on 𝑋 , and of the set tRel(𝑋) of tran-
sitive relations: is the intersection (resp., union) of an arbitrary number of elements
in rRel(𝑋), sRel(𝑋), tRel(𝑋), still an element of rRel(𝑋), sRel(𝑋), tRel(𝑋)?

Exercise or.21□ On the graphical representation of a relation. Let 𝑋 be a set;
a relation 𝑅 on 𝑋 can be depicted as in Figure 4, as a subset of the Cartesian product
𝑋 × 𝑋 . This allows for a graphical representation of properties of 𝑅. Show that a
relation 𝑅 is reflexive if and only if it contains the diagonal. Show that a relation
𝑅 is symmetric if and only if it is symmetric with respect to the diagonal. Find a
similar graphical interpretation for the transitive property.

Exercise or.22□ Find a relation 𝑅 on a set 𝑋 that is
• reflexive and symmetric, but not transitive;
• symmetric and transitive, but not reflexive;
• reflexive and transitive, but not symmetric;
• reflexive, but neither symmetric nor transitive;
• symmetric, but neither reflexive nor transitive;
• transitive, but neither reflexive nor symmetric;
• not symmetric, not transitive, not reflexive.

(You can choose different sets 𝑋 for each item of the list.)

Exercise or.23□ Does the poset of reflexive relations on a set 𝑋 admit a top
element? A bottom element? Same question with the poset of symmetric relations;
same question with the poset of transitive relations.

Exercise or.24□ A generalization of the order on a powerset. Let 𝑈 be a set
called universe; consider the set of multisets in 𝑈, i.e. sequences ⟨𝑥1, . . . , 𝑥𝑛⟩ of
possibly repeated elements of𝑈, irregardless of order.3 The set of all multisets in
a given𝑈 is denotedM(𝑈).

3This means that the multiset ⟨1, 1, 2⟩ is considered equal to the multiset ⟨1, 2, 1⟩, but not to the
multiset ⟨1, 2⟩. Compare what happens, instead, with sets.
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𝑐

𝑏

𝑎

1 1 1

1 0 0

0 1 0

0 0 1

1 1 0

0 1 1

1 0 1

0 0 0

Figure 5. The relation {𝑎, 𝑏, 𝑐} → {1, 2, 3} depicted as a function
{𝑎, 𝑏, 𝑐} → {0, 1}3 sending 𝑎 ↦→ {2, 3}, 𝑏 ↦→ {1}, 𝑐 ↦→ ∅.

• Prove that the set M(𝑈) can be identified with the set of all functions
𝑈 → N.

Let 𝐴 ∈ M(𝑈) be a multiset. Define the counting function 𝜖𝐴 : 𝑈 → N of 𝐴,
mapping each element of𝑈 to the number of times that element occurs in 𝐴. We can
use counting functions to define a ‘generalised inclusion’ relation ·≤ for multisets.
For 𝐴, 𝐵 ∈ M(𝑈), we write 𝐴 ·≤ 𝐵 whenever for all 𝑥 ∈ 𝑈, 𝜖𝐴(𝑥) ≤ 𝜖𝐵 (𝑥).

• Prove or disprove that ·≤ is a partial order relation onM(𝑈).

Define the following operations onM(𝑈):
• the union 𝐴 ·∨ 𝐵, with associated counting function

𝑥 ∈ 𝑈 ↦→ max{𝜖𝐴(𝑥), 𝜖𝐵 (𝑥)}

• the intersection 𝐴 ·∧ 𝐵, with associated counting function

𝑥 ∈ 𝑈 ↦→ min{𝜖𝐴(𝑥), 𝜖𝐵 (𝑥)}

• the sum 𝐴 ⊕ 𝐵, with associated counting function

𝑥 ∈ 𝑈 ↦→ 𝜖𝐴(𝑥) + 𝜖𝐵 (𝑥)

• the difference 𝐴 ⊖ 𝐵, with associated counting function

𝑥 ∈ 𝑈 ↦→ 𝜖𝐴(𝑥) − 𝜖𝐵 (𝑥)

if this number is nonnegative, and 0 otherwise (more formally, the counting
function sends 𝑥 ∈ 𝑈 to max{0, 𝜖𝐴(𝑥) − 𝜖𝐵 (𝑥)}).

Exercise or.25□ Prove that (M(𝑈), ·∧, ·∨) is a distributive lattice. Prove the
inclusion-exclusion principle for multisets:

𝐴 ·∨ 𝐵 = (𝐴 ⊕ 𝐵) ⊖ (𝐴 ·∧ 𝐵). (1.10)

Exercise or.26□ Count how many reflexive relations exist on a set with 7
elements. Same question, but with symmetric relations. Same question, but with
transitive relations.
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Exercise or.27□ Let 𝑃 be the set of all sets [𝑛] = {1, . . . , 𝑛}, for 0 ≤ 𝑛 ≤ 7,
with the convention that [0] is the empty set. Define the relation [𝑖] ≤ [ 𝑗] on 𝑃
if there is a function [𝑖] → [ 𝑗]. Study the order-theoretic properties of the pair
(𝑃, ≤). Is (𝑃, ≤) a poset? If not, what fails? Does 𝑃 have a bottom element? A
top element? Suprema for each subsets?...

Exercise or.28□ A relation 𝑅 on 𝑋 is an equivalence relation if it is reflexive,
symmetric and transitive; count how many equivalence relations are there on a
4-elements set; count how many equivalence relations are there on a set with 17
elements (but do not ask me to do it at the exercise sessions!).

Denote eRel(𝑋) the set of equivalence relations on 𝑋 . Does the poset
(eRel(𝑋), ⊆) have a top element? A bottom element?

Exercise or.29□ Which of these relations are equivalence relations on their
respective domains?

• The relation 𝑅1 defined on the set Z of integers, by the rule (𝑥, 𝑦) ∈ 𝑅1 if
and only if 𝑥 − 𝑦 is a multiple of 7.
• The relation 𝑅2 defined on the set N = {0, 1, 2, . . . } of natural numbers,

by the rule (𝑥, 𝑦) ∈ 𝑅 if and only if the sum 𝑥 + 𝑦 is a prime number.
• The relation 𝑅′2 defined on the set N = {0, 1, 2, . . . } of natural numbers,

by the rule (𝑥, 𝑦) ∈ 𝑅′2 if and only if the product 𝑥𝑦 is a prime number.
• The relation 𝑅3 defined on the set 𝐴𝐴 of functions 𝑓 : 𝐴→ 𝐴, by the rule
( 𝑓 , 𝑔) ∈ 𝑅3 if and only if 𝑓 ◦ 𝑔 = 𝑔 ◦ 𝑓 (◦ denotes function composition).
• The relation 𝑅4 defined on the set R of real numbers, by the rule (𝑥, 𝑦) ∈ 𝑅4

if and only if the difference 𝑥 − 𝑦 is an integer.
• The relation 𝑅5 defined on the set Z × Z of pairs of integers, asking that

two pairs of integers (𝑥1, 𝑥2), (𝑦1, 𝑦2) are in the relation 𝑅5 if and only if
𝑥1𝑦2 = 𝑥2𝑦1.
• The relation 𝑅′5 defined on the set Z × Z× of pairs of integers where the

second component is not zero, by the rule (𝑥1, 𝑥2), (𝑦1, 𝑦2) ∈ 𝑅′5 if and
only if 𝑥1𝑦2 = 𝑥2𝑦1.

Exercise or.30□ Given a relation 𝑅 on 𝑋 , the equivalence relation generated
by 𝑅 is the intersection of all equivalence relations on 𝑋 containing 𝑅; we denote it
�̄�. Show that �̄� coincides with the subset of 𝑋 × 𝑋 defined ‘recursively’ as follows:

• (𝑥, 𝑥) ∈ �̄� for each 𝑥 ∈ 𝑋;
• (𝑦, 𝑥) ∈ �̄� for each (𝑥, 𝑦) ∈ �̄�;
• (𝑥, 𝑦) ∈ �̄� each time there are 𝑧0, 𝑧1, . . . , 𝑧𝑛, 𝑧𝑛+1 ∈ 𝑋 such that 𝑧0 =

𝑥, 𝑧𝑛+1 = 𝑦 and (𝑧𝑖 , 𝑧𝑖+1) ∈ 𝑅 for each 𝑖 = 0, . . . , 𝑛.

A chain in a poset (𝑃, ≤) consists of a subset 𝐶 ⊆ 𝑃 that is totally ordered as a
subset of 𝑃. An upper bound for a subset 𝐶 ⊆ 𝑃 of a poset is an element 𝑚 ∈ 𝑃
such that 𝑥 ≤ 𝑚 for every 𝑥 ∈ 𝐶. A maximal element in (𝑃, ≤) is an element 𝑡 ∈ 𝑃
such that, if 𝑡 ≤ 𝑥 for some 𝑥 ∈ 𝑃, then 𝑡 = 𝑥.

ac1) (Zorn lemma) Let (𝑋, ≤) be a nonempty poset where every chain𝐶 ⊆ 𝑋
has an upper bound. Then, 𝑋 admits a maximal element 𝑡.
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ac2) (Axiom of choice) Let 𝐼 be any set, and 𝑋𝑖 a family of sets indexed by
𝐼. Let 𝑋 :=

⋃
𝑖∈𝐼 𝑋𝑖 . Then, there exists a choice function for the family

{𝑋𝑖}, i.e. a function 𝑓 : 𝐼 → 𝑋 with the property that for each 𝑖 ∈ 𝐼,
𝑓 (𝑖) ∈ 𝑋𝑖 .

Exercise or.31□ Prove that Zorn lemma implies the Axiom of choice; prove
(more difficult) that the Axiom of Choice implies Zorn lemma. You will have a
hard time proving that the Axiom of choice ‘just holds’, meaning that it can be
deduced from other statements than the Zorn lemma, in some possibly convoluted
way. Do not try!

Exercise or.32□ Given a set 𝑋 and an equivalence relation 𝑅 on it, we call the
equivalence class of an element 𝑥 in 𝑋 the set

[𝑥]𝑅 := {𝑦 ∈ 𝑋 | (𝑥, 𝑦) ∈ 𝑅} (1.11)

Show that if [𝑥]𝑅 ∩ [𝑦]𝑅 ≠ ∅, then [𝑥]𝑅 = [𝑦]𝑅 (two equivalence classes are either
disjoint sets, or they coincide). The set 𝑋/𝑅 is the set of all equivalence classes of
𝑋 defined by 𝑅:

𝑋/𝑅 := {[𝑥]𝑅 | 𝑥 ∈ 𝑋}. (1.12)
Define a function 𝜋/𝑅 : 𝑋 → 𝑋/𝑅 : 𝑥 ↦→ [𝑥]𝑅, called projection to the quotient.

Exercise or.33□ Let 𝑓 : 𝐴 → 𝐵 be a function between sets 𝐴, 𝐵; the equiva-
lence relation induced by 𝑓 is the equivalence relation defined by (𝑎, 𝑎′) ∈ 𝑅 𝑓 if
and only if 𝑓 𝑎 = 𝑓 𝑎′ (this means: 𝑎, 𝑎′ have the same image under 𝑓 ). Describe
the equivalence relations induced by the following functions:

• 𝑓1 : 𝐴→ 𝐵 sending each element of 𝐴 in a fixed 𝑏0 ∈ 𝐵.
• 𝑓2 : Z→ Z : 𝑛 ↦→ 7𝑛 multiplying an integer 𝑛 by 7.
• 𝑓3 : R → R taking the floor of a real number (the floor of 𝑥 ∈ R is the

greatest integer 𝑘 such that 𝑘 ≤ 𝑥).
• 𝑓4 : Q→ R multiplying 𝑞 ∈ Q for

√
27.

• 𝑓5 : 𝐴𝐴 → 𝐴𝐴 : 𝜑 ↦→ 𝜑◦7 that composes 𝜑 : 𝐴 → 𝐴 with itself seven
times.
• 𝑓6 : N→ N sending 𝑚 into 𝑚0, where 𝑚𝑘 . . . 𝑚1𝑚0 is the binary expan-

sion of 𝑚 in base 2.
• 𝑓7 : N→ N sending 𝑛 into 𝑛2.

Exercise or.34□ Let 𝑓 : 𝑋 → 𝑌 be a function between two sets; let 𝑅 𝑓 be
the equivalence relation generated by 𝑓 . Prove that 𝑓 induced an injective function
𝑓 : 𝑋/𝑅 𝑓 → 𝑌 . Who is the image of 𝑓 ? What can you deduce when 𝑓 is surjective?

Exercise or.35□ A partition E of a set 𝑋 consists of a family of pairwise
disjoint subsets 𝐸𝑖 ⊆ 𝑋 (this means that if 𝑖 ≠ 𝑗 , 𝐸𝑖 ∩ 𝐸 𝑗 = ∅) such that

⋃
𝐸𝑖 = 𝑋 .

Show that every equivalence relation 𝑅 on 𝑋 defines a partition E(𝑅) di 𝑋 , and
conversely, every partition E of 𝑋 defines an equivalence relation 𝑅(E) on 𝑋 , in
such a way that E(𝑅(E)) = E and 𝑅(E(𝑅)) = 𝑅.
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Figure 6. Zorn lemma, 1998

Exercise or.36□ Describe 𝑋/𝑅 for the (equivalence) relations 𝑅1, . . . , 𝑅
′
5 in

or.29; for those that are not equivalence relations, decsribe 𝑋/�̄�. Describe 𝑋/�̄� 𝑓𝑖
for 𝑓1, . . . , 𝑓7 in or.33.

Exercise or.37□ Use Zorn lemma to show that every infinite set 𝑋 admits a
partition in subsets 𝑋𝛼 such that every 𝑋𝛼 is countable. Use Zorn lemma to show
that given any two sets 𝑋,𝑌 , there exists either an injective function 𝑓 : 𝑋 → 𝑌 , or
an injective function 𝑔 : 𝑌 → 𝑋 .

Exercise or.38□ Define an equivalence relation Γ on the set Rel(𝑋) of equiv-
alence relations on 𝑋 , positing that (𝑅, 𝑆) ∈ Γ if and only if there exists a bĳection
between 𝑋/𝑅 and 𝑋/𝑆. How many elements does the quotient 𝜖Rel(𝑋)/Γ have?

Definition 1.9. Given posets 𝑃,𝑄, a pair of monotone maps

𝑓 : 𝑃 ⇆ 𝑄 : 𝑔 (1.13)

is called a Galois connection if for any two 𝑥 ∈ 𝑃, 𝑦 ∈ 𝑄 the inequality 𝑓 𝑥 ≤ 𝑦 is
true if and only if the inequality 𝑥 ≤ 𝑔𝑦 is true.

Exercise or.39□ Prove that every relation 𝑅 ∈ Rel(𝐴, 𝐵) defines a Galois
connection between the set 𝑃𝐴 of subsets of 𝐴 and the set 𝑃𝐵 of subsets of 𝐵: this
means that there exists a pair of monotone functions

𝑅 (−) : 𝑃𝐴→ 𝑃𝐵 (−)𝑅 : 𝑃𝐵→ 𝑃𝐴 (1.14)

such that 𝑉 ⊆ 𝑅𝑈 if and only if𝑈 ⊆ 𝑉𝑅, for each 𝑉 ∈ 𝑃𝐵 and𝑈 ∈ 𝑃𝐴.

Exercise or.40□ On a graphical representation for relations. Show that a
relation 𝑅 : 𝑋 → 𝑌 can be represented equivalently as follows: a pair of functions

𝑋 𝑅
𝑢oo 𝑣 // 𝑌 (1.15)

such that the function 𝑅 → 𝑋 × 𝑌 defined as 𝑟 ↦→ (𝑢𝑟, 𝑣𝑟) ∈ 𝑋 × 𝑌 is injective. In
such a representation, a relation is denoted (𝑅, 𝑢, 𝑣).

https://www.youtube.com/watch?v=MGbUxtdLpFY
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Exercise or.41□ Define the composition of two relations (𝑅, 𝑢, 𝑣) : 𝑋 → 𝑌 ,
(𝑆, 𝑤, 𝑡) : 𝑌 → 𝑍 as

𝑅 # 𝑆 := {(𝑥, 𝑧) | ∃𝑦 ∈ 𝑌 .(𝑥, 𝑦) ∈ 𝑅, (𝑦, 𝑧) ∈ 𝑆} ⊆ 𝑋 × 𝑍. (1.16)

Exercise or.42□ Define a couple of functions ℎ, 𝑘 ,

𝑅 𝑅 # 𝑆ℎoo 𝑘 // 𝑆 (1.17)

so that 𝑤(𝑘 (𝑞) = 𝑣(ℎ(𝑞)) for every 𝑞 ∈ 𝑅 # 𝑆. This means that the function
𝑤𝑘 = 𝑤 ◦ 𝑘 coincides with the function 𝑣ℎ = 𝑣 ◦ ℎ; a graphical way to represent
such a situation is to depict 𝑤, 𝑘, 𝑣, ℎ as edges of a graph, in this case as a square

𝑅 # 𝑆 𝑘 //

ℎ

��

𝑆

𝑤

��
𝑅

𝑣
// 𝑌

(1.18)

and to declare that the square commutes when 𝑤𝑘 = 𝑣ℎ.

Exercise or.43□ Prove that given any other commutative square

𝐸
𝑠 //

𝑟

��

𝑆

𝑤

��
𝑅

𝑣
// 𝑌

(1.19)

There is a unique function (𝑟/𝑠) : 𝐸 → 𝑅 # 𝑆 with the property that 𝑘 ◦ (𝑟/𝑠) = 𝑠
and ℎ ◦ (𝑟/𝑠) = 𝑟 . This is called the universal property of 𝑅 # 𝑆.

Exercise or.44□ Let Δ𝑋 = {(𝑥, 𝑥) | 𝑥 ∈ 𝑋}. Prove that for every relation
(𝑅, 𝑢, 𝑣) : 𝑋 → 𝑌 one has Δ𝑋 # 𝑅 = 𝑅 and 𝑅 # Δ𝑌 = 𝑅. The relation Δ𝑋 on a set 𝑋
plays the role of identity for the composition operation on relations.

Let (𝑅, 𝑢, 𝑣) : 𝑋 → 𝑌 , (𝑆, 𝑤, 𝑡) : 𝑌 → 𝑍 be relations; prove that (𝑅 # 𝑆)op =

𝑆op # 𝑅op.

Exercise or.45□ Let 𝑅 be a relation on a set 𝑋; define the relation �̃� to be
𝑅∪ 𝑅op ∪Δ, where Δ is the diagonal relation, as above. Prove that �̃� is the smallest
reflexive and symmetric relation containing 𝑅.

Exercise or.46□ Let 𝑋 be a set and 𝑅 a relation on 𝑋 . Show that the transitive
closure of 𝑅, i.e. the smallest transitive relation containing 𝑅, coincides with the
set

∞⋃
𝑛=1

𝑅#𝑛 := 𝑅 ∪ (𝑅 # 𝑅) ∪ (𝑅 # 𝑅 # 𝑅) ∪ . . . (1.20)

Prove that th equivalence relation generated by 𝑅, as defined in or.30, is the
transitive closure of �̃� as defined above.

Exercise or.47□ Let 𝑅, 𝑆 be equivalence relations on a set 𝑋 , such that 𝑅 # 𝑆 =

𝑆 # 𝑅. Prove that 𝑅 # 𝑆 is an equivalence relation on 𝑋 , and in fact it is the join 𝑅∨ 𝑆
of {𝑅, 𝑆} in the poset (𝜖Rel(𝑋), ⊆).
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Exercise or.48□ Let 𝑅, 𝑆, 𝑇, 𝑇 ′ be relations on a set 𝑋 . For each of the
following items, prove it if they are true, or provide a counterexample if they are
false.

• If 𝑅 ⊆ 𝑆, then 𝑅 # 𝑇 ⊆ 𝑆 # 𝑇 and 𝑇 # 𝑅 ⊆ 𝑇 # 𝑆;
• 𝑅 # (𝑇 ∩ 𝑇 ′) = (𝑅 # 𝑇) ∩ (𝑅 # 𝑇 ′) and (𝑇 ∩ 𝑇 ′) # 𝑅 = (𝑇 # 𝑅) ∩ (𝑇 ′ # 𝑅);
• 𝑅 # (𝑇 ∪ 𝑇 ′) = (𝑅 # 𝑇) ∪ (𝑅 # 𝑇 ′) and (𝑇 ∪ 𝑇 ′) # 𝑅 = (𝑇 # 𝑅) ∪ (𝑇 ′ # 𝑅);
• 𝑅 ⊆ 𝑆 if and only if 𝑅op ⊆ 𝑆op;
• (𝑇 ∪ 𝑇 ′)op = 𝑇op ∪ (𝑇 ′)op and (𝑇 ∩ 𝑇 ′)𝑜𝑝 = 𝑇op ∩ (𝑇 ′)op;

Exercise or.49□ Prove Szpilrajn extension theorem: let (𝑃, ≤) be a (thin)
poset; prove that there exists a relation ⪯ extending ≤, i.e. such that 𝑥 ≤ 𝑦 implies
𝑥 ⪯ 𝑦, which is also a (thin) total order, i.e. either 𝑥 ⪯ 𝑦 or 𝑦 ⪯ 𝑥. [Hint: this
exercise can be described as a ‘banal corollary of Zorn lemma’; what is nontrivial
is to understand how to use ac1 on page 17]

Exercise or.50□ Let 𝑋,𝑌 be posets; define a relation ≤ on the cartesian product
𝑋 × 𝑌 by saying

(𝑥, 𝑦) ≤ (𝑥′, 𝑦′) ⇐⇒ 𝑥 ≤ 𝑥′ in 𝑋, 𝑦 ≤ 𝑦′ in 𝑌 . (1.21)

Show that the projection functions 𝜋𝑋 : 𝑋 × 𝑌 → 𝑋 and 𝜋𝑌 : 𝑋 × 𝑌 → 𝑌 are
monotone maps, when 𝑋 × 𝑌 is equipped with this order relation. Show that the
diagonal map

𝑑𝑋 : 𝑋 // 𝑋 × 𝑋 (1.22)
sending 𝑥 ∈ 𝑋 into (𝑥, 𝑥) ∈ 𝑋 × 𝑋 is monotone.

Now, let (𝑋,∨,∧) be an algebraic lattice. Show that there are Galois connec-
tions

_ ∨ _ : 𝑋 × 𝑋 //
𝑋oo : 𝑑𝑋 𝑑𝑋 : //

𝑋 × 𝑋oo : _ ∧ _ (1.23)

if ∨,∧ : 𝑋 × 𝑋 → 𝑋 are respectively the sup and inf operation on 𝑋 .

Exercise or.51□ Let 𝑓 : 𝑋 → 𝑌 be a monotone map between posets; assume
𝑓 fits in a Galois connection 𝑓 ⊣ 𝑢, where 𝑢 : 𝑌 → 𝑋 . Prove that 𝑓 preserves the
bottom element of 𝑋 , if it exists; prove that 𝑢 preserves the top element of 𝑌 , if
it exists. Prove that 𝑓 (sup 𝑆) = sup 𝑓 (𝑆) for every subset 𝑆 ⊆ 𝑋 for which sup 𝑆
exists; in particular, 𝑓 (𝑥 ∨ 𝑥′) = 𝑓 𝑥 ∨ 𝑓 𝑥′ for every 𝑥, 𝑥′ ∈ 𝑋 admitting a sup in 𝑋 .

Exercise or.52□ Let (𝑃, ≤) be a poset; a down-set in 𝑃 is a subset 𝑆 ⊆ 𝑃 such
that if 𝑥 ∈ 𝑆 and 𝑦 ≤ 𝑥, then 𝑦 ∈ 𝑆. Let 𝐷𝑃 be the set of all down-sets of 𝑃; for
each 𝑥 ∈ 𝑃, define the downset ↓𝑥 generated by 𝑥 as the set {𝑦 ∈ 𝑃 | 𝑦 ≤ 𝑥}. Show
that the map 𝑥 ↦→ ↓𝑥 is a monotone, injective map ↓ (−) : 𝑃→ 𝐷𝑃, i.e. show that

𝑎 ≤ 𝑏 ⇒ ↓𝑎 ≤ ↓𝑏. (1.24)

Now let (𝑃, ≤) admit suprema for all down-sets; show that 𝑆 ↦→ ∨
𝑆 defines a

monotone map 𝐷𝑃→ 𝑃, and show that∨
𝑆 ≤ 𝑥 ⇐⇒ 𝑆 ⊆ ↓𝑥 (1.25)

for every 𝑆 ∈ 𝐷𝑃 and 𝑥 ∈ 𝑃.
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Exercise or.53□ Define ↓𝑈 :=
⋃
𝑥∈𝑈

↓𝑥 for every 𝑈 ⊆ 𝑃. Prove that 𝑈 is a
down-set if and only if ↓𝑈 = 𝑈.

Exercise or.54□ In the same notation of or.52, we call a lattice (𝑃, ≤)
admitting all suprema completely distributive if there exists a monotone map
⇓(−) : 𝑃→ 𝐷𝑃, such that

⇓𝑎 ⊆ 𝑆 ⇐⇒ 𝑎 ≤ ∨
𝑆 (1.26)

for all 𝑎 ∈ 𝑃 and 𝑆 ∈ 𝐷𝑃. Show that the only possible definition for ⇓𝑎 is as the set⋂{𝑆 ∈ 𝐷𝑃 | 𝑎 ≤ ∨
𝑆}. Define a relation≪ on 𝑃 as follows: 𝑥 ≪ 𝑎 if and only if

𝑥 ∈ ⇓𝑎. Prove that for any 𝑎, 𝑏, 𝑥 ∈ 𝑃 one has
• if 𝑥 ≪ 𝑎 and 𝑎 ≤ 𝑏, then 𝑥 ≪ 𝑏;
• 𝑎 ≤ ∨{𝑥 ∈ 𝑃 | 𝑥 ≪ 𝑎}.

Exercise or.55□ Let (𝑃,∧,∨) be a lattice. Prove that given a set 𝐼 of indices
and a family {𝑆𝑖 | 𝑖 ∈ 𝐼} of down-sets, the following equality holds:∨ (⋂

𝑖∈𝐼 𝑆𝑖
)
=
∧
𝑖∈𝐼 𝑠𝑖 (1.27)

where 𝑠𝑖 :=
∨
𝑆𝑖 . Let {𝐴𝑖 | 𝑖 ∈ 𝐼} be a family of subsets of 𝑃; prove that the above

equality holds if and only if it holds fo downsets, i.e.∨ (⋂
𝑖∈𝐼
↓𝐴𝑖

)
=
∧
𝑖∈𝐼 𝑎𝑖 (1.28)

where 𝑎𝑖 :=
∨
𝐴𝑖 .

Exercise or.56□ On free distributive lattices on a set. Let 𝐴 be a set; this
series of exercises is intended to build the free distributive lattice on 𝐴, i.e. a
lattice (𝐿 [𝐴],∧,∨) enjoying the following properties:

• (𝐿 [𝐴],∧,∨) is distributive, and there exists a function 𝜂 : 𝐴→ 𝐿 [𝐴];
• For every other distributive lattice (𝑋,∧,∨), every function 𝑓 : 𝐴 → 𝑋

can be extended to a unique lattice homomorphism 𝑓 : (𝐿 [𝐴],∧,∨) →
(𝑋,∧,∨) such that 𝑓 ◦ 𝜂 = 𝑓 .

Definition 1.10. Given a set 𝐴, an antichain, or a clutter, or an irredundant
family in 𝐴 is a family of subsets (𝐸𝛼 ⊆ 𝐴 | 𝛼 ∈ 𝐼) with the property that given
𝛼 ≠ 𝛽 one has 𝐸𝛼 ⊈ 𝐸𝛽 (in words: none of the 𝐸𝛼 contains one of the 𝐸𝛽 as a
subset). Define the set 𝐿 [𝐴] to be the set of finite sets of finite antichains in 𝐴, i.e.
the set of all

{𝑋1, . . . , 𝑋𝑛} (1.29)
where each 𝑋𝑖 is a finite antichain in 𝐴.

Exercise or.57□ Prove that given two antichains 𝑋 = (𝑋1, . . . , 𝑋𝑛), 𝑌 =

(𝑌1, . . . , 𝑌𝑚), one can obtain an antichain from 𝑋∪𝑌 by ‘removing repetitions’: the
set-theoretic union {𝑋1, . . . , 𝑋𝑛, 𝑌1, . . . , 𝑌𝑚} of the two antichains is not, in general,
an antichain (find a counterexample for two antichains on {1, 2, 3, 4, 5}), but we can
define a ‘one-step reduction’ operation⇝ by declaring that

{𝑋1, . . . , 𝑋𝑛, 𝑌1, . . . , 𝑌𝑚}⇝ {𝑋1, . . . , 𝑋𝑛, 𝑌1, . . . , 𝑌 𝑗 , . . . , 𝑌𝑚} (1.30)
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if there exists an index 𝑖 such that either 𝑋𝑖 ⊆ 𝑌 𝑗 or 𝑋𝑖 ⊇ 𝑌 𝑗 . The relation of
reduction ⇝∗ now is defined to be the transitive closure of ⇝; We denote the
binary operation of union (𝑋,𝑌 ) ↦→ 𝑋 ∪𝑌 , followed by complete reduction⇝∗ as
𝑋 ♯ 𝑌 .

Given two elements 𝑋 = (𝑋1, . . . , 𝑋𝑛) and 𝑌 = (𝑌1, . . . , 𝑌𝑚) in 𝐿 [𝐴], define
the join of two elements in 𝐿 [𝐴] as 𝑋 ∨𝑌 := 𝑋 ♯𝑌 and the meet 𝑋 ∧𝑌 := {𝑋𝑖 ♯𝑌 𝑗 |
1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚}.

Exercise or.58□ Prove that these definitions equip 𝐿 [𝐴] with the structure of
a (distributive) lattice. Prove that 𝐿 [𝐴] is the free distributive lattice on the set 𝐴.
[Hint: interpret a generic element{

{𝑎1,1, . . . , 𝑎1,𝑖1}, . . . , {𝑎𝑛,1 . . . , 𝑎𝑛,𝑖𝑛}
}

(1.31)

of 𝐿 [𝐴] as the element (𝑎1,1 ∧ · · · ∧ 𝑎1,𝑖1) ∨ · · · ∨ (𝑎𝑛,1 ∧ · · · ∧ 𝑎𝑛,𝑖𝑛).]

Exercise or.59□ On filters. Let (𝑃, ≤) be a poset. A nonempty subset 𝐴 of 𝑃
is called down-directed if for all 𝑥, 𝑦 ∈ 𝐴 there exists a 𝑧 ∈ 𝐴 such that 𝑧 ≤ 𝑥 and
𝑧 ≤ 𝑦. A subset 𝐴 of 𝑃 is called a filter if it is down-directed and up-closed; a filter
is called proper if 𝐴 ≠ 𝑃. Show that if 𝑃 has finite meets, a filter 𝐴 is a subset of
𝑃 such that

• for all 𝑥, 𝑦 ∈ 𝐴, 𝑥 ∧ 𝑦 ∈ 𝐴;
• ⊤ ∈ 𝐴;
• if 𝑥 ∈ 𝐴 and 𝑥 ≤ 𝑦, then 𝑦 ∈ 𝐴.

Let 𝐴 ⊆ 𝑃 be any down-directed subset; show that ↑𝐴 =
⋃
𝑥∈𝐴

↑𝑥, where ↑𝑥 :=
{𝑦 ∈ 𝑃 | 𝑥 ≤ 𝑦} is a filter, called the filter generated by 𝐴. In particular, every
↑𝑥 is a filter, the principal filter generated by 𝑥. Show that for every 𝐴 ⊆ 𝑋 , and
every function 𝑓 : 𝑋 → 𝑌 one has 𝑓 (↑𝐴) = ↑ ( 𝑓 𝐴).

Exercise or.60□ Let 𝑓 : 𝑋 → 𝑌 be a function; let 𝔞 ⊆ 𝑃𝑋 be a filter in the
powerset of 𝑋 (a common shorthand for this is to say that 𝔞 is a filter on 𝑋). Show
that

{𝐵 ⊆ 𝑌 | 𝑓←𝐵 ∈ 𝔞} (1.32)
defines a filter in 𝑃𝑌 , called the direct image filter on 𝑌 under 𝑓 .

Let 𝔟 ⊆ 𝑃𝑌 be a filter in 𝑃𝑌 ; show that

{𝐴 ⊆ 𝑋 | ∃𝐵 ∈ 𝔟 : 𝑓←𝐵 ⊆ 𝐴} (1.33)

is a filter in 𝑃𝑋 , called the inverse image filter on 𝑋 under 𝑓 .

Exercise or.61□ Let 𝑋 be a set, and 𝔄 a filter on the set of filters on 𝑋; define
a filter

∑
𝔄 (called the Kowalski sum of 𝔄) on 𝑋 as follows: 𝐴 ⊆ 𝑋 is an element

of
∑

𝔄 if and only if the set of filters on 𝑋 that are also filters on 𝐴 belongs to 𝔄.
Prove that

∑
𝔄 is indeed a filter on 𝑋 . Prove that 𝐴 ∈ ∑𝔄 if and only if the set of

filters 𝔞 on 𝑋 that contain 𝐴 as an element belongs to 𝔄.

Definition 1.11. An ultrafilter 𝔵 on a set 𝑋 is a maximal element within the
set of proper filters on 𝑋 , ordered by inclusion; i.e. 𝔵 is a proper filter on 𝑋 such
that, if 𝔞 is a proper filter on 𝑋 containing 𝔵, then 𝔵 = 𝔞.
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Exercise or.62□ Prove that the following conditions are equivalent for a filter
𝔵 on 𝑋 .

• 𝔵 is an ultrafilter on 𝑋;
• for all 𝐴, 𝐵 ⊆ 𝑋 , if 𝐴 ∪ 𝐵 ∈ 𝔵 then either 𝐴 ∈ 𝔵 or 𝔟 ∈ 𝔵;
• for every 𝐴 ⊆ 𝑋 , either 𝐴 ∈ 𝔵 or 𝐴𝑐 = 𝑋 \ 𝐴 ∈ 𝔵.

Exercise or.63□ Let 𝑓 : 𝑋 → 𝑌 be a function between sets, and let 𝔵 be an
ultrafilter on 𝑋; prove that the direct image of 𝔵 under 𝑓 is again an ultrafilter. As a
corollary, when 𝑓 : 𝑋 ↩→ 𝑌 is the inclusion of a subset, for every ultrafilter 𝔶 on 𝑌
such that 𝑌 ∈ 𝔶 the direct image filter 𝔶|𝑋 = {𝑈 ∩ 𝑋 | 𝑈 ∈ 𝔶} is an ultrafilter on 𝑋 .

Exercise or.64□ Let 𝑋 be a set. Prove that for every element 𝑥 ∈ 𝑋 , the
principal filter ↑𝑥 is an ultrafilter on 𝑋 .

Exercise or.65□ Prove that if 𝔛 is an ultrafilter on the set of ultrafilters on 𝑋 ,
then the Kowalski sum

∑
𝔛 is an ultrafilter on 𝑋 .

Defining ultrafilters of different kinds requires the Axiom of Choice, in the form of
Zorn lemma.

Exercise or.66□ Use Zorn lemma to prove that given a set 𝑋 , every proper
filter 𝔞on 𝑋 is contained in an ultrafilter. As a consequence, prove that for every
filter 𝔟 and every filter 𝔞 ⊂ 𝔟, there is an ultrafilter 𝔵 on 𝑋 such that 𝔞 ⊆ 𝔵 but 𝔟 ⊈ 𝔵.
As a consequence, prove that given a filter 𝔞 on a set 𝑋 , 𝔞 is the intersection of all
ultrafilters on 𝑋 containing 𝔞.
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CHAPTER 2

More on ordered sets

In the following, we will always denote (𝐿,∧,∨) an algebraic lattice. Given
two elements 𝑎, 𝑏 ∈ 𝐿 we define the interval [𝑎, 𝑏] as the subset {𝑦 | 𝑎 ≤ 𝑦 ≤ 𝑏}
of 𝐿.

Exercise po.1□ Show that the set I(𝐿) of intervals in 𝐿 becomes a lattice,
defining the lattice operations ∧,∨ on I(𝐿).

Exercise po.2□ Show that the pair of functions

_ ∨ 𝑏 : [𝑎 ∧ 𝑏, 𝑎] // [𝑏, 𝑎 ∨ 𝑏]oo : _ ∧ 𝑎 (2.1)

defines a Galois connection; we say that a lattice 𝐿 is modular when _ ∨ 𝑏 ⊣ _ ∧ 𝑎
is an order-isomorphism between [𝑏, 𝑎 ∨ 𝑏] and [𝑎 ∧ 𝑏, 𝑎].

Exercise po.3□ Show that the following conditions are equivalent for a lattice
𝐿:

• 𝐿 is modular;
• for every 𝑎, 𝑏, 𝑥 ∈ 𝐿, if 𝑎 ≤ 𝑏 then (𝑥 ∨ 𝑎) ∧ 𝑏 ≤ (𝑥 ∧ 𝑏) ∨ 𝑎 (and thus

the equality holds);
• every interval [𝑎, 𝑏] ⊆ 𝐿 has the following property: every 𝑐 ∈ [𝑎, 𝑏] has

at most one complement 𝑐′ in [𝑎, 𝑏].

Exercise po.4□ Show that if 𝐿 is complemented and modular, then every
interval in 𝐿 is also complemented.

Exercise po.5□ Prove that every distributive lattice (cf. Definition 1.8) is
modular.

Definition 2.1. Let 𝐼, 𝐽 ∈ I(𝐿) be two intervals in the lattice 𝐿; we say that 𝐼
and 𝐽 are similar, and we write 𝐼 ≍ 𝐽, if there exist 𝑎, 𝑏 ∈ 𝐿 such that one of the

𝑎 ∨ 𝑏

𝑏𝑎

𝑎 ∧ 𝑏

𝑥

𝑥 ∧ 𝑏

𝑎 ∨ (𝑥 ∧ 𝑏)

Figure 1. A minimal example of non-modular lattice, by con-
struction.

25
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intervals is [𝑎 ∧ 𝑏, 𝑎] and the other is [𝑏, 𝑎 ∨ 𝑏]. This defines a relation _ ≍ _ on
I(𝐿). Clearly, the _ ≍ _ relation is not transitive.

Exercise po.6□ Denote ≍𝑝 the transitive closure of ≍; is ≍𝑝 an equivalence
relation? We say that 𝐼, 𝐽 ∈ I(𝐿) are projective when 𝐼 ≍𝑝 𝐽. Show that projective
intervals are order-isomorphic; is the converse true?

Denote respectively 0𝐿 , 1𝐿 the bottom and top element of the lattice 𝐿; two
finite intervals with endpoints 𝑎, 𝑏, i.e. two chains

𝑢 = {𝑎 = 𝑢0 ≤ 𝑢1 ≤ · · · ≤ 𝑢𝑚 = 𝑏}
𝑣 = {𝑎 = 𝑣0 ≤ 𝑣1 ≤ · · · ≤ 𝑣𝑛 = 𝑏}

of elements of 𝐿 are called equivalent if 𝑚 = 𝑛 and there exists a permutation
𝜋 : {1, . . . , 𝑛} → {1, . . . , 𝑛} such that for evey 𝑖 = 1, 𝑛 one has [𝑢𝑖−1, 𝑢𝑖] ≍𝑝
[𝑣𝜋𝑖−1, 𝑣𝜋𝑖] (see po.6). We denote this situation as 𝑢 ≈ 𝑣.

Exercise po.7□ Show that ≈ is an equivalence relation.

A refinement of a finite interval 𝑢 as above can be obtained by inserting further
elements in the chain: more formally, given 𝑢, 𝑣 as above, we say that the interval 𝑣
refines the interval 𝑢 (and we write 𝑢◁𝑣) if 𝑛 ≥ 𝑚 and {𝑢0, . . . , 𝑢𝑚} ⊆ {𝑣0, . . . , 𝑣𝑛}.
Prove that refinement relation ◁ is a partial order on I(𝐿).

Exercise po.8□ Prove the Schreier refinement lemma: any two finite chains
𝑢, 𝑣 between the same pair of elements 𝑎, 𝑏 in a modular lattice 𝐿 admit equivalent
refinements.

More formally: iven 𝑢, 𝑣 as above we can find intervals 𝑥, 𝑦 such that the
following conditions are satisfied:

• 𝑢 ◁ 𝑥;
• 𝑣 ◁ 𝑦;
• 𝑥 ≈ 𝑦.

Definition 2.2. A composition series between 𝑎, 𝑏 ∈ 𝐿 is a chain

𝑎 = 𝑢0 ≤ 𝑢1 ≤ · · · ≤ 𝑢𝑚 = 𝑏 (2.2)

which has no refinement, except by introducing repititions of some of the given
elements 𝑎𝑖 . The integer 𝑚 is the length of the chain.

Exercise po.9□ Prove the Jordan-Hölder theorem on composition series: any
two composition series between the same pair of elements 𝑎, 𝑏 in a modular lattice
are equivalent.

Definition 2.3. A modular lattice 𝐿 is of finite length if there is a composition
chain between 0𝐿 and 1𝐿; we define the length of 𝐿 to be the length of such a
composition chain (by the Jordan-Hölder theorem, this is well-defined).

Exercise po.10□ Prove that in a modular lattice of finite length, every chain

[𝑎, 𝑏] = 𝑎 = 𝑢0 ≤ 𝑢1 ≤ · · · ≤ 𝑢𝑚 = 𝑏 (2.3)

can be refined to a composition series.
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Definition 2.4 (Noetherian and Artinian lattices). A lattice 𝐿 is Noetherian,
or satisfies the ascending chain condition if there is no infinite ascending sequence

𝑎0 < 𝑎1 < 𝑎2 < . . . (2.4)

of distinct elements. Dually, 𝐿 is called Artinian, or it satisfies the descending
chain condition if there is no infinite descending sequence

· · · < 𝑎2 < 𝑎1 < 𝑎0 (2.5)

of distinct elements.

Exercise po.11□ Prove that 𝐿 is Noetherian (resp., Artinian) if and only if
every nonempty subset 𝑆 of 𝐿 has a maximal (resp., minimal) element. [Assuming
Noetherianity, you will need the Zorn lemma to prove the existence of a maximal
element.]

Exercise po.12□ Deduce from the previous exercise that a modular lattice is
of finite length if and only if it is both noetherian and Artinian.

Exercise po.13□ Let 𝑎 be an element of a modular lattice 𝐿. Then 𝐿 is
Noetherian (resp., Artinian) if and only if both intervals [0, 𝑎] and [𝑎, 1] are
Noetherian (resp., Artinian).

Exercise po.14□ Prove Knaster-Tarski fixpoint theorem: every monotone
endofunction 𝑓 : 𝐿 → 𝐿 of a complete lattice has at least a fixpoint. In fact, the
set of fixpoints of 𝑓 in 𝐿 also forms a complete lattice, so that 𝑓 has a least and a
greatest fixpoint.

A converse of this theorem also holds: if every monotone function 𝑓 : 𝐿 → 𝐿

on a lattice 𝐿 has a fixpoint, then 𝐿 is a complete lattice.

(Hint: define the set of prefix points of 𝑓 as 𝑃 𝑓 := {𝑥 ∈ 𝐿 | 𝑥 ≤ 𝑓 𝑥}; show
that

∨
𝑃 𝑓 is a fixpoint of 𝑓 . You can also argue in a similar way, using the set 𝑆 𝑓

of postfix points 𝑆 𝑓 := {𝑥 ∈ 𝐿 | 𝑓 𝑥 ≤ 𝑥}.)

Definition 2.5. A totally ordered set 𝑊 is called well-ordered if every non-
empty subset 𝑆 ⊆ 𝑊 admits a least element.

Well-ordered sets serve the purpose to classify order types: every well-ordered
set is completely described by a certain distinguished element in its order-isomor-
phism class, an ordinal number. Roughly speaking, an ordinal number describes
how you can line up the elements of a set so that the relation ≤ is a well-order
according to the definition above. Assuming the axiom of choice, it is possible to
prove something quite strong: every set, no matter what is its internal structure,
can be turned into a well-order. However, as it is customary with AoC-dependent
theorems, there is no way to make this definition an explicit construction.

Exercise po.15□ Let (𝑊, ≤) be a well-ordered set, and let 𝑓 : 𝑊 → 𝑊 be a
monotone endofunction; show that for every 𝑎 ∈ 𝑊 , 𝑎 ≤ 𝑓 (𝑎).

Exercise po.16□ Show that a well-ordered set is rigid: the only order-auto-
morphism of a well-ordered set𝑊 is the identity.
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Show that the isomorphisms between ordered sets are rigid: if there exists an
order-isomorphism 𝑓 : 𝑉 → 𝑊 between two well-ordered sets, then 𝑓 is unique.

Exercise po.17□ Show that well-ordered sets are trichotomous: given two
well-ordered sets 𝑉,𝑊 , exactly one of the following three cases holds:

• 𝑉 is isomorphic to𝑊 ; in this case, we write that the order type of 𝑉 𝑜(𝑉)
is the same of the order type 𝑜(𝑊) of𝑊 .
• 𝑉 is isomorphic to an initial segment of𝑊 ; in this case, we write 𝑜(𝑉) ⪯
𝑜(𝑊).
• 𝑊 is isomorphic to an initial segment of 𝑉 ; in this case, we write 𝑜(𝑊) ⪯
𝑜(𝑉).

Exercise po.18□ Assume that each well-ordered set 𝑊 is assigned its ordinal
𝛼 = 𝑜(𝑊). Show that the assignment is well-defined and that ⪯ totally orders the
class Ord of all ordinals, and in fact, the pair (Ord, ⪯) is a well-order...

... But it’s not an ordinal: it lacks the property of being a set.
We want to have a more hands-on model of ordinals to work with: ‘isomorphism

classes of well-ordered sets’ is a bit too elusive of a definition.

Definition 2.6. A set 𝑋 is transitive if each element of 𝑋 is also a subset of 𝑋:

𝑥 ∈ 𝑋 ⇒ 𝑥 ⊆ 𝑋. (2.6)

Equivalently, 𝑋 is transitive if
⋃
𝑋 ⊆ 𝑋 , or 𝑋 ⊆ 2𝑋.

A set 𝑋 is an ordinal if it is transitive and well-ordered by the relation ∈ (it’s an
∈-woset).

Historically, an ordinal is denoted with a lowercase Greek letter

𝛼, 𝛽, 𝛾, . . . , 𝜔 (2.7)

or with ‘decorated’ versions thereof: 𝛼0, 𝛾
′, etc.

Exercise po.19□ Prove that
• The two definitions of ordinals do not confilict: given a well-ordered

set 𝑊 , there exists exactly one transitive and ∈-woset 𝑋 with an order
isomorphism𝑊 � 𝑋;
• 0 := 𝑜(∅) is an ordinal;
• if 𝛼 is an ordinal, and 𝛽 ∈ 𝛼, then 𝛽 is an ordinal;
• if 𝛼, 𝛽 are ordinals and 𝛼 ⊊ 𝛽 then 𝛼 ∈ 𝛽;
• if 𝛼, 𝛽 are ordinals then either 𝛼 ⊆ 𝛽 or 𝛽 ⊆ 𝛼.

Exercise po.20□ Prove that
• for each ordinal 𝛼, 𝛼 = {𝛽 | 𝛽 < 𝛼};
• if C is a nonempty class of ordinals, then

⋂C is an ordinal,
⋂C ∈ C and⋂C = inf C;

• if 𝑋 is a nonempty set of ordinals, then
⋃
𝑋 is an ordinal, and

⋃
𝑋 =

sup 𝑋;
• for every ordinal 𝛼, the set 𝛼+ := 𝛼 ∪ {𝛼} is an ordinal, and 𝛼+ = inf{𝛽 |
𝛽 > 𝛼}.



Tuesday 31st January, 2023—22:21

2. MORE ON ORDERED SETS 29

Definition 2.7. A successor ordinal is an ordinal 𝛼 such that there exists an
ordinal 𝛽 for which 𝛼 = 𝛽+; 𝛼 is then the successor of 𝛽, and it’s usually written
𝛼 = 𝛽 + 1.

A limit ordinal is an ordinal 𝛼 such that 𝛼 =
⋃
𝛼 = sup{𝛽 | 𝛽 < 𝛼} (in other

words, a limit ordinal is such
⋃
𝛼 ⊆ 𝛼, but also 𝛼 ⊆ ⋃

𝛼).

We consider 0 to be a limit ordinal and define 0 = sup∅.

Exercise po.21□ Prove that 𝛼 is a limit ordinal if and only if for every 𝛽, 𝛽 < 𝛼
implies 𝛽 + 1 < 𝛼.

The possibility to build limit ordinals relies on the axiom of infinity of ZF; in
particular, one can

Exercise po.22□ Prove that if a set 𝑋 is inductive,1 then 𝑋 ∩ Ord is also
inductive, and the set 𝜔 =

⋂{𝑋 | 𝑋 is inductive} is the least nonzero limit ordinal.

Stripped of its order, the ordinal𝜔 is just ‘the set of natural numbers’ {0, 1, . . . }.
Without the axiom of infinity, the only ordinals to which we have access are

0 = sup∅ an the finite ones 0+ = 1 := {∅}, 2 = 1+ = 0++ := {∅, {∅}}, ...,
𝑛 + 1 := 𝑛+.

The power of ordinals lies in the fact that one can provide inductive definitions.
A ‘definition by transfinite recursion’ usually takes the following form: let K be
a class, then a function ℎ : Ord → K, called a transfinite sequence, is uniquely
determined by

• the definition of the ‘base’ of the induction: a certain element ℎ0 of the
class K;
• the definition of the ‘successor’ step: a way to ‘compute’ ℎ𝛼+1 in terms

of all ℎ0, ℎ1, . . . , ℎ𝛼;
• the definition of the ‘limit’ step: a way to ‘compute’ ℎ𝜆, when 𝜆 is a limit

ordinal, in terms of all ℎ𝛽 , 𝛽 < 𝜆.
The most profitable way to employ such definitions is to define arithmetic operations
on Ord: sum, product, and exponentiation.

Each such binary operation is specified by a recursion on the second argument,
i.e. (for example for addition) there will be

• a base definition of what it means 𝛽 + 0;
• a successor definition of what it means 𝛽 + (𝛼+) in terms of (𝛽 + 0, 𝛽 +

1, . . . , )𝛽 + 𝛼;
• a limit definition of what it means 𝛽 + (sup{𝜃 | 𝜃 < 𝜆}).

Definition 2.8 (Ordinal sum). The operation of ordinal sum is defined as
follows: fix any ordinal 𝛽; then

• (base) 𝛽 + 0 := 𝛽;
• (successor) 𝛽 + 𝛼+ := (𝛽 + 𝛼)+;

1A set 𝑋 is inductive if for every 𝑥 ∈ 𝑋 also 𝑥+ = 𝑥 ∪ {𝑥} ∈ 𝑋 . Since ∅ ∈ 𝑋 for every 𝑋 , a set 𝑋 is
inductive if it contains {∅}, and thus also {∅, {∅}}, and thus also... The axioms of infinity says that
there exists at leas an inductive set.
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• (limit) 𝛽 +⋃{𝛼 | 𝛼 < 𝜆} :=
⋃{𝛽 + 𝛼 | 𝛼 < 𝜆}.

Exercise po.23□ Prove that the ordinal sum is associative; prove that it is
commutative when restricted to finite ordinals 0, 1, 2 . . . . Can you also prove that it
is not commutative, because 𝜔+1 is not order-isomorphic to 1+𝜔? (Bonus points:
prove that in fact 1 + 𝜔 = 𝜔 as ordinals.) Is it true that 0 + 𝛼 = 𝛼 for each ordinal
𝛼?2

Definition 2.9 (Ordinal product). The operation of ordinal product is defined
as follows: fix any ordinal 𝛽; then

• (base) 𝛽 · 0 := 0;
• (successor) 𝛽 · 𝛼+ := (𝛽 · 𝛼) + 𝛽;
• (limit) 𝛽 ·⋃{𝛼 | 𝛼 < 𝜆} :=

⋃{𝛽 · 𝛼 | 𝛼 < 𝜆}.
Exercise po.24□ Prove that the ordinal product is associative; prove that it is

commutative when restricted to finite ordinals 0, 1, 2 . . . . Can you also prove that it
is not commutative, because 𝜔 · 2 is not order-isomorphic to 2 · 𝜔? (Bonus points:
prove that in fact 2 · 𝜔 = 𝜔 as ordinals). Is it true that 1 · 𝛼 = 𝛼 for each ordinal 𝛼?

Definition 2.10 (Ordinal exponentiation). The operation of ordinal exponen-
tiation is defined as follows: fix any ordinal 𝛽; then

• (base) 𝛽0 := 1;
• (successor) 𝛽 (𝛼+ ) := (𝛽𝛼) · 𝛽;
• (limit) 𝛽

⋃{𝛼 |𝛼<𝜆} :=
⋃{𝛽𝛼 | 𝛼 < 𝜆}.

(When it could be potentially confusing to adopt the superscript notation 𝛽𝜆 we
might write exp(𝛽, 𝜆). So, exp(𝛽, 𝛼+) = exp(𝛽, 𝛼) · 𝛽 and exp(𝛽, sup{𝛼 | 𝛼 <

𝜆}) = sup{exp(𝛽, 𝛼) | 𝛼 < 𝜆}.)

Ordinal exponentiation is not associative, it’s not commutative, it doesn’t have a
unit element.

Exercise po.25□ Prove the three identities

𝛽1 = 𝛽 𝛽𝛼+𝛾 = 𝛽𝛼 · 𝛽𝛾 (𝛽𝛼)𝛾 = 𝛽𝛼·𝛾 (2.8)

for ordinal exponentiation, valid for all ordinals 𝛽, 𝛼, 𝛾.

The operations of sum, product and exponentiation of ordinals can be succinctly
constructed using just the successor function 𝛼 ↦→ 𝛼+ in a clever way. This is
ultimately based on the fact that given the ordinal 𝛽, each function 𝛽 + _, 𝛽 ·
_, exp(𝛽, _) can be regarded as a transfinite sequence Ord→ Ord.

Exercise po.26□ Let ℎ : Ord→ Ord be a function; define the 𝛼-th iterate of ℎ
by transfinite recursion as follows:

ℎ0 := id ℎ𝛼+1 = ℎ𝛼 ◦ ℎ ℎ𝜆 := 𝛽 ↦→ sup{ℎ𝛼𝛽 | 𝛼 < 𝜆}. (2.9)

Prove that

2Find an intuitive argument first, and then formalise the fact that 1 + 𝜔 = sup{1 + 𝛼 | 𝛼 < 𝜔} equals
𝜔. Watch this video watch?v=YApat9UmUNg for inspiration.

https://www.youtube.com/watch?v=YApat9UmUNg
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• 𝛽 + 𝛼 = (_ + 1)𝛼𝛽;
• 𝛽 · 𝛼 = (_ + 𝛽)𝛼0;
• exp(𝛽, 𝛼) = (_ · 𝛽)𝛼1.

The point is that now we can apply the same recursive definition for the iterates
of the exp function, building 𝜔𝜔 , 𝜔𝜔𝜔 , 𝜔𝜔𝜔𝜔

... more formally, we define a
transfinite sequence

ℎ0 := 𝜔 ℎ𝛼+1 := 𝜔ℎ𝛼 ℎ𝜆 := sup{ℎ𝛽 | 𝛽 < 𝜆} (2.10)

Now, what is ℎ𝜔 exactly? It is a tower of 𝜔’s that is 𝜔 steps high.

Exercise po.27□ Prove that ℎ𝜔 is a fixpoint for the function 𝑥 ↦→ 𝜔𝑥 , or in
other words a solution to the equation

𝜔𝑥 = 𝑥 (2.11)

in Ord.

The ordinal ℎ𝜔 , that is more often written 𝜖0, is then equal to

sup{𝜔, 𝜔𝜔 , 𝜔𝜔𝜔

, 𝜔𝜔
𝜔𝜔

, . . . }

. The notation suggests that there exists an entire hierarchy of greater 𝜖’s, 𝜖1, 𝜖2, . . .

where
𝜖1 = sup{𝜖0 + 1, 𝜔𝜖0+1, 𝜔𝜔

𝜖0+1
, 𝜔𝜔

𝜔
𝜖0+1
, . . . } (2.12)

and more generally

𝜖𝛼+1 = sup{𝜖𝛼 + 1, 𝜔𝜖𝛼+1, 𝜔𝜔
𝜖𝛼+1

, . . . } (2.13)

Exercise po.28□ Prove that
• 𝜖1 = sup{0, 1, 𝜖0, 𝜖0

𝜖0 , 𝜖0
𝜖0

𝜖0
, . . .};

• 𝜖𝛼+1 = sup{0, 1, 𝜖𝛼, 𝜖 𝜖𝛼𝛼 , 𝜖 𝜖
𝜖𝛼
𝛼
𝛼 , . . . };

• 𝜖𝜔 = sup{𝜖0, 𝜖1, 𝜖2, . . .}.

It is now possible to define

𝜖𝜔+1, 𝜖𝜔+2, . . . , 𝜖𝜔+𝜔 = 𝜖2·𝜔 , . . . , 𝜖𝜔 ·𝜔 = 𝜖𝜔2 , 𝜖𝜔3 , . . . , 𝜖𝜔𝜔 , . . .

up to 𝜖𝜖0 ; what next?
Isn’t that obvious? By transfinite recursion, ℎ0 = 𝜖0, and ℎ𝛼+1 = 𝜖ℎ𝛼 , whose

smallest fixpoint will be an infinitely descending tower of 𝜖’s, 𝜖𝜖𝜖... , with 𝜔 nested
subscripts.

We could call this ordinal 𝛾0, and build 𝛾1, 𝛾2, . . . , 𝛾𝛾0 , . . . , 𝛾𝛾𝛾0
, . . . , up to the

smallest fixpoint of the function ℎ0 = 𝛾0, ℎ𝛼+1 = 𝛾ℎ𝛼 . However, the Greek alphabet
will sooner or later fit badly in this picture and turn out to be a very unwieldy choice
of notation at some point. A more systematic approach to this notational problem
is given by the Veblen hierarchy of fixpoint-counting functions, but this is a longer
story than it is worth explaining here.

A normal function is a class function 𝑓 : Ord→ Ord such that:
• 𝑓 is strictly monotone: if 𝛼 < 𝛽, then 𝑓 (𝛼) < 𝑓 (𝛽);
• 𝑓 is continuous: for every limit ordinal 𝜆, 𝑓 (𝜆) = sup{ 𝑓 (𝛼) : 𝛼 < 𝜆}.
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Exercise po.29□
• Prove that the following operations are normal functions: 𝑥 ↦→ 𝛼+ 𝑥, 𝑥 ↦→
𝛼 · 𝑥, 𝑥 ↦→ 𝛽𝑥 for every 𝛼, 𝛽 ∈ Ord, 𝛽 > 1.
• Prove that the composition of two normal functions is normal.
• Prove the Veblen fixpoint lemma for normal functions: if 𝑓 : Ord→ Ord

is normal, then it has a fixpoint, i.e., for some ordinal 𝛼, 𝑓 (𝛼) = 𝛼, and in
fact the class Fix( 𝑓 ) = {𝛼 ∈ Ord | 𝑓 (𝛼) = 𝛼} is unbounded and closed:
if 𝐴 ⊆ Fix( 𝑓 ) then sup 𝐴 exists in Fix( 𝑓 ).

Given a poset (𝑃, ≤) and a subset 𝐴 ⊆ 𝑃, consider the set ↑𝐴 = {𝑥 ∈ 𝑃 | ∀𝑎 ∈
𝐴, 𝑎 ≤ 𝑥} of all upper bounds of 𝐴, and the set ↓𝐴 = {𝑥 ∈ 𝑃 | ∀𝑎 ∈ 𝐴, 𝑥 ≤ 𝑎}
of all lower bounds of 𝐴. The Isbell envelope Isb(𝑃) of 𝑃 consists of the set all
subsets 𝐴 ⊆ 𝑃 with the property that ↓ (↑𝐴) = 𝐴, ordered by inclusion. An element
𝐴 ∈ Isb(𝑃) will be called Isbell-closed.

Exercise po.30□ Show that ↓ (−) ⊣ ↑ (−) is a Galois connection (2𝑃, ⊇) →
(2𝑃, ⊆); this means that 𝑈 ⊆ ↓𝑉 if and only if 𝑉 ⊆ ↑𝑈; deduce that the following
inequalities hold:

• for every 𝐴 ⊆ 𝑃, 𝐴 ⊆ ↓ (↑𝐴);
• ↑ (↓ (↑𝐴)) = ↑𝐴.

Exercise po.31□ Define a monotone function 𝜄: 𝑃 → Isb(𝑃) sending 𝑥 ∈ 𝑃
to the principal ideal ↓𝑥 (show that this is well-defined, i.e. that ↓𝑥 is Isbell-closed,
and that 𝜄is monotone).

Exercise po.32□ Show that the Isbell envelope of 𝑃 is order-isomorphic to the
poset of cuts in 𝑃: a cut in 𝑃 is a pair (𝐴, 𝐵) of subsets of 𝑃 such that ↑𝐴 = 𝐵

and ↓𝐵 = 𝐴. (Show that, if (𝐴, 𝐵) is a cut, 𝐴 is Isbell-closed, an conversely if 𝐴
is Isbell-closed...), and for two cuts (𝐴, 𝐵), (𝐴′, 𝐵′) we define (𝐴, 𝐵) ≤ (𝐴′, 𝐵′) if
and only if 𝐴 ⊆ 𝐴′. (Show that this is in turn equivalent to 𝐵′ ⊆ 𝐵).

Exercise po.33□ Show that Isb(𝑃) is a complete lattice equipped with an
injective monotone function 𝑃 ↩→ Isb(𝑃); show the universal property of the Isbell
envelope: given an injective monotone function 𝜂 : 𝑃 → 𝐷, with codomain a
complete lattice, there exists a monotone embedding 𝜂 : Isb(𝑃) ↩→ 𝐷 such that the
triangle

𝑃
𝜂 //

𝜄

""

𝐷

Isb(𝑃)
�̄�

<<

(2.14)

is commutative.

Exercise po.34□ (Difficult.) Assume the poset (𝑃, ≤) has a certain Hasse
diagram 𝐻𝑃; devise a method to find the Hasse diagram of Isb(𝑃).

Definition 2.11. A locally finite poset 𝑃 is a poset (𝑃, ≤) such that each
element [𝑎, 𝑏] ∈ I(𝑃) of the interval poset of 𝑃 is a finite set.
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Exercise po.35□ Let 𝑃 be a locally finite poset. Define the incidence algebra
𝐽𝑃 of a poset 𝑃 to be the set of all functions 𝑓 : I(𝑃) → C, assigning to each interval
[𝑎, 𝑏] ∈ I(𝑃) a complex number 𝑓[𝑎,𝑏] . On this set we define the convolution
operation as follows:

𝑓 ∗ 𝑔 : [𝑎, 𝑏] ↦→
∑︁

𝑎≤𝑥≤𝑏
𝑓[𝑎,𝑥 ]𝑔[𝑥,𝑏] . (2.15)

Show that the incidence algebra 𝐽𝑃 of 𝑃 is a monoid, wen it is equipped with
the convolution product and when the identity element is the ‘delta’ function 𝛿 :
[𝑎, 𝑏] ↦→ 1 if 𝑎 = 𝑏 and 0 otherwise.

Exercise po.36□ The zeta function of an incidence algebra 𝐽𝑃 is the constant
function 𝜁 (𝑎, 𝑏) = 1 for every nonempty interval [𝑎, 𝑏]. Prove that 𝜁 is an invertible
element of 𝐽𝑃 (with respect to convolution); the inverse is the Möbius function of
𝑃, defined as follows:

𝜇(𝑥, 𝑦) =


1 𝑥 = 𝑦∑
𝑥≤𝑧<𝑦 𝜇(𝑥, 𝑧) 𝑥 < 𝑦

0 otherwise.
(2.16)

Prove that indeed 𝜁 ∗ 𝜇 = 𝛿 = 𝜇 ∗ 𝜁 .

Exercise po.37□ Find an explicit expression for 𝜁 ∗ 𝜁 . What about 𝜁 ∗ 𝜁 ∗ 𝜁?
Generalise.

Consider the poset (N, _ | _) of positive integers partially ordered by divisibility.
The reduced incidence algebra consists of functions 𝑓 (𝑎, 𝑏) that are invariant under
multiplication, i.e. 𝑓 (𝑘𝑎, 𝑘𝑏) = 𝑓 (𝑎, 𝑏) for all 𝑘 ≥ 1.

For a multiplicative invariant function, the value 𝑓 (𝑎, 𝑏) depends only on 𝑏/𝑎,
so a natural basis consists of invariant delta functions 𝛿𝑛 defined by 𝛿𝑛 (𝑎, 𝑏) = 1 if
𝑏/𝑎 = 𝑛 and 0 otherwise: any invariant function can be written 𝑓 =

∑
𝑛≥0 𝑓 (1, 𝑛) ·

𝛿𝑛.

Exercise po.38□ Show that the convolution of two invariant delta functions is
still an invariant delta function.

To every element of the reduced incidence algebra we associate the Dirichlet
series 𝜅 𝑓 :=

∑
𝑛≥1

𝑓 (1,𝑛)
𝑛𝑠

.
The zeta function 𝜁 belongs to the reduced incidence algebra and its associated

Dirichlet series corresponds to the so-called Riemann zeta function

𝜁 (𝑠) = ∑
𝑛≥1

1
𝑛𝑠
. (2.17)

Exercise po.39□
• Show that 0 = 𝜁 (0) = 𝜁 (−2) = 𝜁 (−4) = · · · = 𝜁 (−2𝑘) for all 𝑘 ≥ 0.
• (difficult) Show that all other zeros of 𝜁 belong to the set 1

2 + 𝑖R = { 1
2 + 𝑖𝑡 |

𝑡 ∈ R}.
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CHAPTER 3

Semigroups, monoids

Exercise sm.1□ If 𝑎, 𝑏 ∈ R+ are strictly positive real numbers, the quotient 𝑎/𝑏
is still strictly positive. Is the set (R+, /) endowed with the operation (𝑎, 𝑏) ↦→ 𝑎/𝑏
a semigroup? Is it commutative?

Exercise sm.2□ Define a binary operation on the set of natural numbers as
follows:

𝑎 ◦ 𝑏 := 𝑎 + 𝑏 + 𝑎𝑏 (3.1)
Show that (N, ◦) is a commutative semigroup.

Exercise sm.3□ Let (𝑆, ·) be a monoid, and 𝑋 any set. Define a binary operation
∗ on the set 𝑆𝑋 of all functions 𝑋 → 𝑆 as follows:

( 𝑓 , 𝑔) ↦→ 𝑓 ∗ 𝑔 : 𝑥 ↦→ 𝑓 (𝑥) · 𝑔(𝑥) (3.2)

Show that (𝑆𝑋, ∗) is a monoid, and that (𝑆𝑋, ∗) is commutative if (𝑆, ·) is. Is the
converse implication true (if (𝑆𝑋, ∗) is commutative, (𝑆, ·) is commutative)?

Exercise sm.4□ Let 𝑆 be a finite set, and consider the monoid 𝑆𝑆 of all functions
𝑓 : 𝑆 → 𝑆. Prove that 𝑓 is invertible if and only if it is an injective function, if and
only if it is a surjective function. Find a counterexample when 𝑆 is not finite.

Exercise sm.5□ Consider the set 𝑆 = R× × N, where R× = R \ {0}; define a
binary operation on 𝑆 as follows:

(𝑎, 𝑛) (𝑏, 𝑚) := (𝑎𝑏𝑛, 𝑛𝑚) (3.3)

Show that, with this definition, 𝑆 is a semigroup. Is it a monoid? Is it commutative?

Exercise sm.6□ Let 𝐴𝐴 be the monoid of endofunctions of a set 𝐴; count how
many elements there are in 𝐴𝐴 if 𝐴 = {1, 2, 3, 4, 5}. Let 𝑓 (𝑎) = min{𝑎2, 5}, and
consider the cylic monoid 𝑁 = ⟨ 𝑓 ⟩ generated by 𝑓 ; how many elements does 𝑁
have? Which ones?

Exercise sm.7□ Let Z × Z be the set of pairs of integers (𝑚, 𝑛). Define a
monoid operation

(𝑝, 𝑞) (𝑟, 𝑠) := (𝑝𝑟 − 𝑞𝑠, 𝑝𝑠 + 𝑞𝑟) (3.4)
prove that it is indeed a monoid operation and that the function

𝜈 : Z × Z→ N : (𝑝, 𝑞) ↦→ 𝑝2 + 𝑞2 (3.5)

is a monoid homomorphism.

The relation of congruence modulo an integer is arguably the most important
kind of equivalence relation in all Mathematics. Let Z be the set of integers

35
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{. . . ,−2,−1, 0, 1, 2, . . . }, and fix an integer 𝑛 ∈ Z≥1. Define an equivalence
relation _ ≡𝑛 _ on Z as follows: 𝑎 ≡𝑛 𝑏 if and only if 𝑎 − 𝑏 is a multiple of 𝑛.

Exercise sm.8□ Show that ≡𝑛 is an equivalence relation and, in fact, a congru-
ence on the set of integers, namely that if 𝑎 ≡𝑛 𝑏, then for every 𝑐 ∈ Z 𝑎+𝑐 ≡𝑛 𝑐+𝑏
and 𝑐 · 𝑎 ≡𝑛 𝑐 · 𝑏.

Exercise sm.9□ Consider the set Z/𝑛 := Z/≡𝑛 of equivalence classes modulo
≡𝑛. Show that Z/𝑛 is a finite set, with exactly 𝑛 elements {[0], [1], . . . , [𝑛 − 1]}.
Define a sum operation on Z/𝑛,

[𝑎] + [𝑏] = [𝑎 + 𝑏] (3.6)

and a product operation
[𝑎] · [𝑏] = [𝑎 · 𝑏] (3.7)

Show that +, · are well-defined, and that (Z, +), (Z, ·) are commutative monoids.
Show that, moreover, (Z, +) is an Abelian group.

Exercise sm.10□ Let 𝑓 : 𝑀 → 𝑁 a surjective monoid homomorphism. Prove
that if 𝑀 is cyclic, so is 𝑁 .

Exercise sm.11□ Let R+ = {𝑥 ∈ R | 𝑥 ≥ 0}. Prove that (R+, ·, 1) is a
submonoid of (R, ·, 1). Prove that the function log2 : R+ → R sending 𝑥 into log2 𝑥

is a monoid isomorphism.

Exercise sm.12□ Let 𝑓 : 𝑀 → 𝑀 ′ be a monoid homomorphism. Then,
• prove that if 𝑁 is a submonoid of 𝑀 , its image 𝑓 (𝑁) is a submonoid of
𝑀 ′;
• prove that if 𝑁 ′ is a submonoid of 𝑀 ′, then 𝑓←(𝑁 ′) is a submonoid of 𝑀 .

Exercise sm.13□ Let 𝑀 be the monoid (N, +, 0) × (N, +, 0), where

(𝑎, 𝑏) + (𝑐, 𝑑) = (𝑎 + 𝑐, 𝑏 + 𝑑) (3.8)

and where the unit is (0, 0). Let 𝑎, 𝑏 ∈ N and define the function

𝑓𝑎,𝑏 : 𝑀 → N : (𝑥, 𝑦) ↦→ 𝑎𝑥𝑏𝑦 ∈ 𝑀. (3.9)

Prove that 𝑓𝑎,𝑏 is a homomorphism 𝑀 → (N, ·, 1). Prove that if 𝑎 > 1 and 𝑏 = 𝑎2,
𝑓𝑎,𝑏 is not injective. Prove that if 𝑎, 𝑏 are different prime numbers, then 𝑓 is
injective.

Exercise sm.14□ (Cayley’s theorem for monoids.) Prove that every monoid is
isomorphic to a submonoid of (𝑋𝑋, ◦) for a suitable set 𝑋 [hint: take 𝑋 equal to
the monoid 𝑀 , and for each 𝑎 ∈ 𝑀 define the function 𝑓𝑎 : 𝑥 ↦→ 𝑎𝑥.].

Exercise sm.15□ Let 𝑆 = {−1, 0} regarded as a subset of R. Describe the
submonoid ⟨𝑆⟩ of (R, ·). Prove that there exists a unique endomorphism 𝜑 :
(R, ·) → (R, ·) with the property that 𝜑(0) = 0 and 𝜑(𝑎) = −1 for every 𝑎 < 0.
Prove that the image of such 𝜑 is exactly 𝑆.

Exercise sm.16□ Let 𝑋 be a set and consider the monoid (𝑃𝑋,∪) of subsets
of 𝑋 , where the monoid operation is given by the union. Let 𝑆 = {{𝑎} | 𝑎 ∈ 𝑋} be
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the subset of 𝑃𝑋 whose elements are singletons. Describe the submonoid ⟨𝑆⟩ in
(𝑃𝑋,∪).

Exercise sm.17□ In the same notation as above, describe the cyclic submonoid
⟨𝑎⟩ ≤ (𝑃𝑋,∪) for a given 𝑎 ∈ 𝑋 .

Exercise sm.18□ Recall that a group is a monoid (𝑀, ·, 1𝑀 ) such that every
element is invertible (this means that every element 𝑥 ∈ 𝑀 has an inverse 𝑥−1, such
that 𝑥 · 𝑥−1 = 1𝑀 = 𝑥−1 · 𝑥). Prove that a semigroup (𝑆, ·) is a group if and only if
for every 𝑎 ∈ 𝑆 we have the equalities

𝑎𝑆 := {𝑎𝑠 | 𝑠 ∈ 𝑆} = 𝑆 = 𝑆𝑎 := {𝑠𝑎 | 𝑠 ∈ 𝑆}. (3.10)

The notation 𝑎𝑆 is a particular case, and shorthand, for the following more
general definition: let 𝐴, 𝐵 be subsets of a semigroup 𝑆; denote as 𝐴 · 𝐵 or just 𝐴𝐵
the set {𝑎 · 𝑏 | 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}; in particular, 𝑎𝐵 is a shorthand for {𝑎} · 𝐵.

This notation clearly extends to the ‘product’ of 𝑛 subsets 𝐴1, . . . 𝐴𝑛 ⊆ 𝑆:

𝐴1 · · · · · 𝐴𝑛 := {𝑎1 . . . 𝑎𝑛 | 𝑎𝑖 ∈ 𝐴𝑖 , 1 ≤ 𝑖 ≤ 𝑛}. (3.11)

Exercise sm.19□ Let (𝑆, ·) be a finite semigroup satisfying both the left and
right cancellation laws: if 𝑥𝑦 = 𝑥𝑧 then 𝑦 = 𝑧, and if 𝑦𝑥 = 𝑧𝑥, then 𝑦 = 𝑧. Prove
that 𝑆 is a group.

Exercise sm.20□ An idempotent element of a monoid (𝑀, ·, 1𝑀 ) is an element
𝑒 ∈ 𝑀 such that 𝑒 · 𝑒 = 𝑒. Prove that a finite monoid is a group if and only if it has
a unique idempotent element (and that element is the identity 1𝑀 ).

Exercise sm.21□ Let (𝑆, ·) be a finite semigroup, and 𝑎 ∈ 𝑆; show that there
exists a smallest positive integer 𝑛 ∈ N, called the index of 𝑎, such that 𝑎𝑛 = 𝑎𝑛+𝑑

for some 𝑑 > 0. The smallest possible choice of 𝑑 is called the period of 𝑎. Show
that 𝑠𝑐 = 𝑠𝑛+𝑟𝑑 for every 𝑟 ≥ 0; show that 𝑠𝑝 = 𝑠𝑞 if and only if 𝑝 = 𝑞 < 𝑛, or
𝑝, 𝑞 ≥ 𝑛 and 𝑝 ≡𝑑 𝑞.

Exercise sm.22□ In the same notation above, assume 𝑆 is a finite semigroup,
say of cardinality 𝑛. Let 𝑆𝑛 be the set of products 𝑠1 . . . 𝑠𝑛 of 𝑛 elements of 𝑆. Prove
the pumping lemma: the set 𝑆𝑛 equals the set

𝑆 · 𝐸𝑆 · 𝑆 = {𝑠 · 𝑒 · 𝑠′ | 𝑠, 𝑒, 𝑠′ ∈ 𝑆, 𝑒𝑒 = 𝑒} (3.12)

(in words: every element of 𝑆𝑛 can be written as a product 𝑠𝑒𝑠′, where 𝑠, 𝑒, 𝑠′ ∈ 𝑆
and 𝑒 is an idempotent).

Exercise sm.23□ Let 𝑆, 𝑇 be finite semigroups; let 𝑓 : 𝑆 → 𝑇 be a surjective
homomorphism; prove that the image of the set of idempotents of 𝑆, 𝐸𝑆 = {𝑒 ∈ 𝑆 |
𝑒𝑒 = 𝑒} under 𝑓 equals the set 𝐸𝑇 of idempotents of 𝑇 .

Exercise sm.24□ Let (𝑀,★) be a monoid; define 𝑥 ∼ 𝑦 if there exists 𝑛 ∈ N
such that 𝑥𝑛 = 𝑦𝑛 in 𝑀 . Show that ∼ is an equivalence relation on 𝑀 , and that
if 𝑀 is commutative and 𝑥 ∼ 𝑦, then 𝑎 ★ 𝑥 ∼ 𝑎 ★ 𝑦 for all 𝑎 ∈ 𝑀 . Describe the
equivalence class of 1𝑀 .
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Exercise sm.25□ Let 𝐴 be a set, and (𝐴𝐴, ◦) the monoid of all functions
𝑓 : 𝐴→ 𝐴. Fix a subset 𝐵 ⊆ 𝐴. Show that the set

𝑆(𝐵) := { 𝑓 : 𝐴→ 𝐴 | 𝑓 (𝐵) ⊆ 𝐵} (3.13)

is a submonoid of 𝐴𝐴. Prove that the function 𝜓 : 𝑆(𝐵) → 𝐵𝐵 sending 𝑓 : 𝐴→ 𝐴

to its restriction to 𝐵, 𝑓 |𝐵 : 𝐵→ 𝐵 is a surjective monoid homomorphism. Define
an equivalence relation on 𝑆(𝐵) saying that 𝑓 ∼ 𝑔 if 𝑓 (𝑏) = 𝑔(𝑏) for every 𝑏 ∈ 𝐵;
prove that ∼ is precisely the equivalence relation induced by 𝜓.

Exercise sm.26□ Define an equivalence relation on the set N × N as follows:

(𝑝, 𝑞) ∼ (𝑟, 𝑠) ⇐⇒ 𝑝 + 𝑠 = 𝑞 + 𝑟. (3.14)

Define the sum on N × N as follows:

(𝑝, 𝑞) + (𝑟, 𝑠) = (𝑝 + 𝑟, 𝑞 + 𝑠); (3.15)

define the product
(𝑝, 𝑞) (𝑟, 𝑠) = (𝑝𝑟 + 𝑞𝑠, 𝑝𝑠 + 𝑞𝑟). (3.16)

Prove that
• ∼ is an equivalence relation, and a congruence on N × N;
• the set (N × N, +) is a monoid;
• the set (N × N, ·) is a monoid;
• the distributive property holds for every (𝑎, 𝑏), (𝑝, 𝑞), (𝑟, 𝑠) ∈ N × N:

(𝑎, 𝑏) · ((𝑝, 𝑞) + (𝑟, 𝑠)) = (𝑎, 𝑏) (𝑝, 𝑞) + (𝑎, 𝑏) (𝑟, 𝑠). (3.17)

• ∼ is the equivalence relation generated by 𝑓 : N×N→ Z : (𝑎, 𝑏) ↦→ 𝑎−𝑏.

Exercise sm.27□ In the same notation of the previous exercise, show that
𝑓 : N × N→ Z : (𝑎, 𝑏) ↦→ 𝑎 − 𝑏 induces an isomorphism Z � (N × N)/∼.

An important role in monoid theory is played by the notion of ideal and the
closely related notion of Green’s relations. In the following, let 𝑀 be a finite
monoid.

A left ideal (respectively, right ideal) of 𝑀 is a nonempty subset 𝐼 ⊆ 𝑀 such
that 𝑀𝐼 ⊆ 𝐼 (respectively, 𝐼𝑀 ⊆ 𝐼). A two-sided ideal, or ideal is a nonempty
subset 𝐼 ⊆ 𝑀 such that 𝑀𝐼𝑀 ⊆ 𝐼. We write 𝐼 ⊴ 𝑀 to denote the fact that 𝐼 ⊆ 𝑀
and 𝐼 is an ideal. The set (Idl(𝑀), ⊴) is a poset.

Exercise sm.28□ If 𝐼 ⊴𝑀 is an ideal of a finite monoid 𝑀 , prove that 𝐼 contains
at least an idempotent element 𝑒 = 𝑒𝑒.

Exercise sm.29□ Let 𝑀 be a finite monoid; then it has a finite number of ideals
𝐼1, . . . , 𝐼𝑟 ; prove that the product 𝐼1𝐼2 . . . 𝐼𝑟 is still an ideal of 𝑀 , and that it is
contained in every other ideal. Consequently, each finite monoid M has a unique
minimal ideal 𝐼min.

Let𝑚 ∈ 𝑀 be an element of a finite monoid𝑀 . The ideals𝑀𝑚,𝑚𝑀 and𝑀𝑚𝑀
are respectively called the principal left, principal right, and principal two-sided
ideal generated by 𝑚.
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Exercise sm.30□ Define

𝐼 [𝑚] := {𝑥 ∈ 𝑀 | 𝑚 ∉ 𝑀𝑥𝑀}; (3.18)

prove that if 𝐼 [𝑚] ≠ ∅, then it is an ideal of 𝑀; prove that 𝐼 [𝑚] is empty if and only
if it is contained in 𝐼min.

Exercise sm.31□ Let 𝑀 be a finite monoid. Prove that the following defines
three equivalence relations on 𝑀:

• 𝑥 ≡ 𝑦 (mod 𝔧) if and only if 𝑀𝑥𝑀 = 𝑀𝑦𝑀;
• 𝑥 ≡ 𝑦 (mod 𝔩) if and only if 𝑀𝑥 = 𝑀𝑦;
• 𝑥 ≡ 𝑦 (mod 𝔯) if and only if 𝑥𝑀 = 𝑦𝑀 .

(Writing ‘mod 𝔧’ is just a slick shorthand: take for example the 𝔧 relation; we write
𝑥 ≡ 𝑦 (mod 𝔧) or 𝑥 ≡𝔧 𝑦 to denote that (𝑥, 𝑦) ∈ 𝔧 ⊆ 𝑀 × 𝑀 .) These are called
respectively the two-sided, left and right Green relations on 𝑀 . We say that 𝑥, 𝑦
are two-sided Green equivalent, or 𝔧-equivalent, if 𝑥 ≡ 𝑦 (mod 𝔧). Similarly, we
say that 𝑥, 𝑦 are left Green equivalent, or 𝔩-equivalent, if 𝑥 ≡ 𝑦 (mod 𝔩), and right
Green equivalent, or 𝔯-equivalent, if 𝑥 ≡ 𝑦 (mod 𝔯).

Exercise sm.32□ Let 𝑎, 𝑏, 𝑐 ∈ 𝑀 be elements of a finite monoid. Prove that if
𝑎 ≡𝔯 𝑏, then 𝑐𝑎 ≡𝔯 𝑐𝑏 and if 𝑎 ≡𝔩 𝑏, then 𝑎𝑐 ≡𝔩 𝑏𝑐; is it also true that if 𝑎 ≡𝔯 𝑏,
then 𝑎𝑐 ≡𝔩 𝑏𝑐?

Exercise sm.33□ Let 𝑀 be a finite monoid. Prove that the relation 𝔧 is the join
of 𝔯, 𝔩 in the poset of equivalence relations on 𝑀 .

Exercise sm.34□ Let 𝑘 be a field and 𝑛 ≥ 1 an integer; consider the monoid
𝑀𝑛 (𝑘) of 𝑛 × 𝑛 matrices with entries in 𝑘 . Show that two matrices 𝐴, 𝐵 ∈ 𝑀𝑛 (𝑘)
are 𝔧-equivalent if and only if they have the same rank.

Exercise sm.35□ Let 𝐴𝐴 be the monoid of endofunctions of a finite set 𝐴; show
that 𝑓 , 𝑔 ∈ 𝐴𝐴 are 𝔧-equivalent if and only if their images have the same cardinality;
𝑓 , 𝑔 ∈ 𝐴𝐴 are 𝔩-equivalent if and only if the associated equivalence relations 𝑅 𝑓 , 𝑅𝑔
are equal; 𝑓 , 𝑔 ∈ 𝐴𝐴 are 𝔯-equivalent if and only if they have the same image.

Exercise sm.36□ A monoid 𝑀 is called 𝔯-trivial if 𝑚𝑀 = 𝑛𝑀 implies 𝑚 = 𝑛,
or in other words, if the relation 𝔯 reduces to the identity Δ𝑀 ; similarly we define
a 𝔩-trivial monoid, and a 𝔧-trivial monoid 𝑀 (in the latter case, we mean that if
𝑀𝑚𝑀 = 𝑀𝑛𝑀 , then 𝑚 = 𝑛. Prove that a monoid is 𝔧-trivial if and only if it is both
𝔯-trivial and 𝔩-trivial.

Exercise sm.37□ Implement Light associativity test in your favourite program-
ming language: given a finite set 𝑆, a sufficient condition for a binary operation
★ : 𝑆 × 𝑆 → 𝑆 to be associative is that given any element 𝑦 ∈ 𝑆, the following two
tables coincide:

• the ‘matrix’ 𝐿1(𝑦) constructed from an enumeration 𝑆 = {𝑥1, . . . , 𝑥𝑛}
whose entry (𝑖, 𝑗) is 𝑥𝑖 ★ (𝑦 ★ 𝑥 𝑗) ∈ 𝑆;
• the ‘matrix’ 𝐿2(𝑦), constructed from the same enumeration, whose entry
(𝑖, 𝑗) is (𝑥𝑖 ★ 𝑦) ★ 𝑥 𝑗 .
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The operation ★ is associative if and only if for every 𝑦 ∈ 𝑆, 𝐿1(𝑦) = 𝐿2(𝑦).

Definition 3.1. A partially ordered monoid is a monoid (𝑀, ·, 1) equipped
with a partial order ≤ that is compatible with the monoid operation; this means that
for each 𝑎, 𝑏, 𝑐 ∈ 𝑀 , if 𝑏 ≤ 𝑐 then 𝑎𝑏 ≤ 𝑎𝑐 and 𝑏𝑎 ≤ 𝑐𝑎.

A partially ordered monoid (𝑀, ≤, ·, 1) is usually called a po-monoid.

Exercise sm.38□ Prove that if 𝑏 ≤ 𝑐 in a po-monoid and 𝑏, 𝑐 are invertible then
𝑐−1 ≤ 𝑏−1, so that in a po-group 𝐺 (i.e. a po-monoid that in addition is a group),
the inversion map (−)−1 : 𝐺op → 𝐺 is monotone.

Exercise sm.39□ Let (𝐺, ≤, ·, 1) be a po-group; the positive cone 𝐺+ ⊆ 𝐺 is
the set {𝑥 ∈ 𝐺 | 1 ≤ 𝑥}. Surprisingly, given a group and a positive cone, we can
reconstruct the order relation on 𝐺: a group equipped with a positive cone is a pair
(𝐺, 𝐻) where 𝐺 is a group and 𝐻 ⊆ is such that

• 1 ∈ 𝐻;
• if 𝑎, 𝑏 ∈ 𝐻, then 𝑎𝑏 ∈ 𝐻;
• if 𝑎 ∈ 𝐻 and 𝑥 ∈ 𝐺, then 𝑥−1𝑎𝑥 ∈ 𝐻;
• if 𝑎, 𝑎−1 ∈ 𝐺, then 𝑎 = 1.

Prove that if (𝐺, 𝐻) is a group with a positive cone, the relation 𝑎 ≤ 𝑏 iff 𝑏𝑎−1 ∈ 𝐻
defines a partial order on 𝐺 that renders (𝐺, ≤, ·, 1) a po-group, and 𝐻 coincides
with the positive cone of (𝐺, ≤, ·, 1).

Exercise sm.40□ Let 𝑃,𝑄 be two posets. Define the product order on the
Cartesian product 𝑃×𝑄 by (𝑥, 𝑦) ≤ (𝑥′, 𝑦′) if and only if 𝑥 ≤ 𝑥′ and 𝑦 ≤ 𝑦′. Show
that the product order 𝐺 × 𝐻 of two po-groups is again a po-group, with the usual
group structure on the set 𝐺 × 𝐻.

Exercise sm.41□ Let (𝑃, ≤) be a poset, and let ∼ be an equivalence relation on
𝑃. One says that ∼ is compatible with the order relation if 𝑥 ≤ 𝑦, 𝑥 ∼ 𝑥′ and 𝑦 ∼ 𝑦′
imply 𝑥′ ≤ 𝑦′ or 𝑥′ ∼ 𝑦′. When this happens the quotient set 𝑃/∼ carries a relation
[𝑥] ≤ [𝑦] if and only if 𝑥 ≤ 𝑦 or 𝑥 ∼ 𝑦; prove that this is a partial order. Prove that
the projection to the quotient 𝑃→ 𝑃/∼ is a monotone map.

Exercise sm.42□ Let 𝑃,𝑄 be two posets. Define the lexicographic order on
the Cartesian product 𝑃 × 𝑄 by (𝑥, 𝑦) ≤lex (𝑥′, 𝑦′) if and only if either 𝑥 < 𝑥′, or
𝑥 = 𝑥′ and 𝑦 ≤ 𝑦′. Denote 𝑃 ×lex 𝑄 the set 𝑃 ×𝑄 equipped with the lexicographic
order.

Show that the lexicographic order on Z × Z makes it a po-group. Is it true that
more generally, the lexicographic product Z×lex 𝑃 of two po-groups is a po-group?

Exercise sm.43□ Prove that any group 𝐺 can be seen as a po-group with the
trivial order relation 𝑔 ≤ ℎ if and only if 𝑔 = ℎ; prove that if 𝐺 is a finite group, the
trivial order (𝑥 ≤ 𝑦 iff 𝑥 = 𝑦) is the only possible po-group structure.

Exercise sm.44□ Let (𝑃, ≤) be a poset, and𝑄𝑃 the set of monotone mappings
𝑃→ 𝑄; defines the standard order on 𝑄𝑃 by saying that 𝑓 ≤ 𝑔 when for all 𝑝 ∈ 𝑃
𝑓 (𝑝) ≤ 𝑔(𝑝). Prove that this defines a partial order on 𝑄𝑃.
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We will consider the standard order on 𝑄𝑃 in the particular case 𝑃 = 𝑄 and
sometimes restricted to the subset of invertible monotone mappings 𝑃→ 𝑃 (i.e. to
the set Aut(𝑃) of ‘monotone automorphisms’ of 𝑃). Prove that 𝑃𝑃 is a po-monoid,
and Aut(𝑃) ⊆ 𝑃𝑃 is a po-group when both sets are equipped with the standard
order.

Definition 3.2. Let (𝐺, ≤) be a po-group. A 𝐺-poset, or a poset equipped
with a 𝐺-action, is a partially ordered set (𝑃, ≤) endowed with a po-group ho-
momorphism 𝑎 : 𝐺 → Aut(𝑃) to the group of order isomorphisms of 𝑃 with its
standard po-group structure.

If a po-group 𝐺 acts on a poset 𝑃, the action of the function 𝑎(𝑔, 𝑝) is usually
denoted as an infix dot 𝑔.𝑝.

Exercise sm.45□ Show that equivalently, a 𝐺-poset is a partially ordered set
𝑃 together with a group action 𝐺 × 𝑃 → 𝑃 which is a monotone map, where on
𝐺 × 𝑃 one puts the product order.

Exercise sm.46□ Prove that the poset (Z, ≤) of integers with their usual order
is a Z-poset with the action given by the usual sum of integers. More generally,
every po-group is a 𝐺-poset, where the action 𝐺 × 𝐺 → 𝐺 is the group operation.

Show that the poset (R, ≤) of real numbers with their usual order is a Z-poset
for the action given by the sum of real numbers with integers (seen as a subring of
real numbers).

Exercise sm.47□ Let 𝐺 be a po-group acting on a poset 𝑃. A 𝐺-fixed point
for a 𝐺-poset 𝑃 is an element 𝑝 ∈ 𝑃 kept fixed by all the elements of 𝐺 under the
𝐺-action. Prove that if 𝑃 has a top element ⊤𝑃 or bottom element ⊥𝑃, then they
both are 𝐺-fixed points. Deduce that one can always extend the action of 𝐺 on 𝑃
on a larger poset 𝑃⋄ = 𝑃 ∪ {+∞,−∞} where −∞ ≤ 𝑥 ≤ +∞ for all 𝑥 ∈ 𝑃.

Exercise sm.48□ Given a po-group 𝐺 and two 𝐺-posets 𝑃,𝑄 we say that a
monotone map 𝑓 : 𝑃 → 𝑄 is 𝐺-equivariant if for all 𝑔 ∈ 𝐺 one has 𝑓 (𝑔.𝑝) =
𝑔. 𝑓 (𝑝). More formally, let𝐺 be a po-group, and 𝑃,𝑄 be two𝐺-posets, respectively
with actions 𝑎𝑃 : 𝐺 × 𝑃 → 𝑃 and 𝑎𝑄 : 𝐺 × 𝑄 → 𝑄. Then, a monotone map
𝑓 : 𝑃→ 𝑄 is 𝐺-equivariant if 𝑎𝑄 (𝑔, 𝑓 𝑝) = 𝑓 (𝑎𝑃 (𝑔, 𝑝))

Exercise sm.49□ An equivalence relation ∼ on a 𝐺-poset 𝑃 is said to be
compatible with the 𝐺-action if 𝑥 ∼ 𝑦 implies 𝑔 · 𝑥 ∼ 𝑔 · 𝑦 for any 𝑔 in 𝐺. If ∼ is
compatible both with the order and with the 𝐺-action then the quotient set 𝑃/∼ is
naturally a 𝐺-poset with the 𝐺-action 𝑔 · [𝑥] = [𝑔 · 𝑥]. Moreover the projection to
the quotient is a morphism of 𝐺-posets.

Exercise sm.50□ Consider the group Z of integers as a po-group acting on
itself by addition. Prove that there exists a bĳection

𝑃 � {equivariant maps 𝜑 : (Z, ≤) → (𝑃, ≤)} (3.19)

arguing as follows: the choice of an element 𝑥 in a Z-poset 𝑃 is equivalent to the
datum of a Z-equivariant morphism 𝜑𝑥 : (Z, ≤) → (𝑃, ≤). (Bonus point if you feel
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like it: the element 𝑥 is a Z-fixed point if and only if the corresponding morphism
𝜑 factors Z-equivariantly through (∗, ≤),)

Exercise sm.51□ Consider the group Z of integers as a po-group acting on
itself by addition. Prove that a Z-equivariant monotone map 𝜑 : (Z, ≤) → (𝑃, ≤)
is either injective or a constant map; as a consequence, if 𝑃 is a finite poset, there
are no nontrivial monotone Z-actions.

Exercise sm.52□ Show that every equivariant map 𝜑 : 𝑃 → 𝑄 where 𝑄 is
bounded (i.e. it admits a top and a bottom element) extends to a unique �̄� : 𝑃⋄ → 𝑄

defining �̄�(∞) = ⊤𝑄 and �̄�(−∞) = ⊥𝑄 (see sm.47 for the notation 𝑃⋄).

Definition 3.3. A quantale is an algebraic lattice (𝑄,∧,∨) where every subset
𝑆 ⊆ 𝑄 has both an infimum and a supremum. In particular, a quantale 𝑄 has a
top element ⊤𝑄 and a bottom element ⊥𝑄, and it is equipped with a semigroup
structure ∗ : 𝑄 × 𝑄 → 𝑄 such that both maps 𝑥 ∗ _ and _ ∗ 𝑦 preserve arbitrary
joins:

𝑥 ∗
( ∨

𝑖∈𝐼 𝑦𝑖
)
=
∨
𝑖∈𝐼 (𝑥 ∗ 𝑦𝑖)

( ∨
𝑖∈𝐼 𝑥𝑖

)
∗ 𝑦 = ∨

𝑖∈𝐼 (𝑥𝑖 ∗ 𝑦). (3.20)

The quantale is unital when ∗ has an identity element; commutative when ∗ is
commutative.

Exercise sm.53□ Show that in a quantale the assignment (𝑎, 𝑏) ↦→ ∨{𝑞 ∈ 𝑄 |
𝑎 ∗ 𝑞 ≤ 𝑏} defines a binary operation _ _ _ : 𝑄 ×𝑄 → 𝑄 with the property that

𝑎 ∗ 𝑥 ≤ 𝑏 ⇐⇒ 𝑥 ≤ (𝑎 _ 𝑏). (3.21)

Similarly, the assignment (𝑎, 𝑏) ↦→ ∨{𝑞 ∈ 𝑄 | 𝑞∗𝑎 ≤ 𝑏} defines a binary operation
_ ^ _ : 𝑄 ×𝑄 → 𝑄 with the property that

𝑥 ∗ 𝑎 ≤ 𝑏 ⇐⇒ 𝑥 ≤ (𝑎 ^ 𝑏). (3.22)

Exercise sm.54□ Show that a two-element set {0, 1} has a unique quantale
structure if we define 𝑎 ∗ 𝑏 = 𝑎 · 𝑏 is 1 if and only if both 𝑎, 𝑏 are 1, and 0 otherwise
(define 𝑎 ⇒ 𝑏 in such a way that (3.21) is true, and prove it is the unique possible
choice).

Exercise sm.55□ Let 𝑆 = {0, 𝜖 , 1} be a three-element set; prove that the
following definitions, packaged in a multiplication table, for ∗ and⇒ equip 𝑆 with
a quantale structure, and show that it is the unique one.

∗ 0 𝜖 1
0 0 0 0
𝜖 0 𝜖 1
1 0 1 1

∗ 0 𝜖 1
0 1 0 0
𝜖 1 𝜖 0
1 1 1 1

A Heyting algebra 𝐻 is a quantale where the _ ∗ _ operation coincides with
the binary meet.

Exercise sm.56□ Prove that equivalently, a Heyting algebra consists of a meet-
semilattice with bottom element, equipped with a binary operation _ _ _ satisfying

𝑎 ∧ 𝑏 ≤ 𝑐 ⇐⇒ 𝑐 ≤ 𝑎 _ 𝑏 (3.23)
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Exercise sm.57□ Prove that a Heyting algebra 𝐻 admits a pseudo-complement
operation: for every 𝑎 ∈ 𝐻 there exists a maximum element ∁𝑎 with the property
that 𝑎 ∧ ∁𝑎 = 0.

Exercise sm.58□ Prove that if 𝐻 is a Heyting algebra,
• ∁𝑎 is uniquely determined by the property that 𝑏 ∧ 𝑎 = 0 if and only if
𝑏 ≤ ∁𝑎;
• if 𝑥 ≤ 𝑦, then ∁𝑦 ≤ ∁𝑥;
• the assignment 𝑥 ↦→ ∁∁𝑥 is monotone, and 𝑥 ≤ ∁∁𝑥;
• for each 𝑥 ∈ 𝐻, ∁∁∁𝑥 = ∁𝑥;
• for each 𝑎, 𝑏 ∈ 𝐻, ∁∁(𝑎 ∧ 𝑏) = ∁∁𝑎 ∧ ∁∁𝑏;
• if 𝑎, 𝑏 ∈ 𝐻 have pseudo-complements ∁𝑎,∁𝑏, then ∁(𝑎∨ 𝑏) = ∁𝑎∧∁𝑏

and actually more generally the first de Morgan law holds:

∁ (∨𝑖∈𝐼 𝑎𝑖) =
∧
𝑖∈𝐼 ∁𝑎𝑖 (3.24)

• for every 𝑎 ∈ 𝐻, ∁(𝑎 ∨ ∁𝑎) = 0𝐻 (the bottom element of 𝐻).

Definition 3.4. A Boole algebra is a Heyting algebra that is complemented,
i.e. the pseudo-complement of 𝑎 also satisfies the equation 𝑎 ∨ ∁𝑎 = 1.

Exercise sm.59□ Prove that a Heyting algebra is a Boole algebra if and only if
for every 𝑎 ∈ 𝐻, ∁∁𝑎 = 𝑎.

Exercise sm.60□ Prove that in a Boole algebra the second de Morgan law holds
together with the first:

∁ (∧𝑖∈𝐼 𝑎𝑖) =
∨
𝑖∈𝐼 ∁𝑎𝑖 (3.25)

Exercise sm.61□ Let 𝔣 be a proper filter in a Boolean algebra 𝐵. Prove that the
following statements are equivalent.

• 𝔣 is maximal;
• 𝔣 is prime;
• for every 𝑎 ∈ 𝐵 either 𝑎 or ∁𝑎 ∈ 𝔣.

(This generalises or.62).

Every Heyting algebra 𝐻 contains a maximal Boole algebra:

Exercise sm.62□ Prove that 𝐵𝐻 = {𝑎 ∈ 𝐻 | ∁∁𝑎 = 𝑎} ⊆ 𝐻 is a Boole
algebra.

Exercise sm.63□ Prove that the following conditions on a Heyting algebra L
are equivalent:

• the second de Morgan law (3.25) holds;
• for each 𝑎 ∈ 𝐻, ∁∁𝑎 ∨ ∁𝑎 = 1𝐻 ;
• every element of 𝐵𝐻, as defined above, has a complement in 𝐻;
• the identity ∁∁(𝑎 ∨ 𝑏) = ∁∁𝑎 ∨ ∁∁𝑏 holds for all 𝑎, 𝑏 ∈ 𝐻;
• 𝐵𝐻 is a sublattice of 𝐻.

Exercise sm.64□ Show that any po-group 𝐺 (written multiplicatively) admit-
ting all sups and inf is a quantale if we define 𝑎 ∗ 𝑏 as the group multiplication 𝑎𝑏,
and 𝑎 _ 𝑏 = 𝑎−1, 𝑎 ^ 𝑏 = 𝑏𝑎−1 (cf. (3.21) and (3.22)).
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Exercise sm.65□ Let 𝑄 be a quantale, 𝑎, 𝑏, 𝑐 ∈ 𝑄. Prove the following facts:
• 𝑎 ∗ (𝑎 _ 𝑏) ≤ 𝑏;
• (𝑎 ^ 𝑏) ∗ 𝑎 ≤ 𝑏;
• 𝑏 _ (_ 𝑐) = (𝑎 ∗ 𝑏) _ 𝑐;
• 𝑎 ^ (𝑏 ^ 𝑐) = (𝑎 ∗ 𝑏) ^ 𝑐;
• 𝑎 _ (𝑏 ^ 𝑐) = 𝑏 ^ (𝑎 _ 𝑐);
• 𝑎 ∗ (𝑎 _ 𝑏) = 𝑏 if and only if there exists 𝑐 such that 𝑎 ∗ 𝑐 = 𝑏;
• (𝑎 ^ 𝑏) ∗ 𝑎 = 𝑏 if and only if there exists 𝑐 with 𝑐 ∗ 𝑎 = 𝑏.

Exercise sm.66□ Let 𝑀 be a monoid, and consider the set 𝑃𝑀 of subsets of
𝑀 . Define a binary operation

𝐴 ∗ 𝐵 := {𝑎𝑏 | 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}, (3.26)

and show that (𝑃𝑀, ∗) is a quantale when considered with the natural order given
by the inclusion of subsets.

Exercise sm.67□ (Pataraia’s constructive proof of Knaster-Tarski theorem (cf.
po.14)). Recall the definition of po-monoid from Definition 3.1; a po-monoid
(𝑀, ·, 1) is called directed complete when every directed subset admits a supre-
mum, and it is said to have a zero when there exists an element 𝑧 ∈ 𝑀 such that
𝑥𝑧 = 𝑧𝑥 = 𝑧 for all ∈ 𝑀 . (For example, the po-monoid of natural numbers (N, ·, 1)
including zero is directed complete and has a zero.)

• Show that if 𝑀 is a directed complete monoid such that 1 ≤ 𝑥 for all
𝑥 ∈ 𝑀 , then 𝑀 has a zero. [Hint: show that 𝑀 is a directed set, and let
𝑧 =

∨
𝑀 .]

• Use the above point to prove that any monotone map 𝑓 : 𝐷 → 𝐷 defined
on a dcpo 𝐷 with a bottom element, admits a minimal fix point. [Hint:
let 𝑆 = {𝑥 ∈ 𝐷 | 𝑥 ≤ 𝑓 𝑥} be the set of preix points of 𝑓 ; let 𝑃𝑆 be the set
of monotone endofunctions ℎ such that id ≤ ℎ and ℎ(𝑠) = 𝑠 for all 𝑠 ∈ 𝑆.
Apply the previous point when 𝑀 = 𝑃𝑆.]
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CHAPTER 4

Linear Algebra, done hard

Recall the definition of ring, ring homomorphism, ideal, field and get back
at whatever amount of Linear Algebra you have been previously exposed, better if
from an Abstract Algebra book. You’re going to need it.

Exercise la.1□ Let 𝑅 be a unital ring; prove that there exists a unique ring
homomorphism 𝜂𝑅 : Z→ 𝑅, called the characteristic homomorphism.

Find the kernel of 𝜂𝑅 when 𝑅 = Z,Q and when 𝑅 = Z/𝑛Z is the ring of integers
modulo 𝑛. Prove that ker 𝜂𝑅 is an ideal of Z generated by a single element 𝑞 ∈ Z.

Exercise la.2□ Given a unital ring 𝑅, its characteristic is the minimal generator
𝑞 of ker 𝜂𝑅.

Prove that a field has characteristic either zero or a prime number.

A ring extension of a commutative ring 𝑅 is a commutative ring 𝐸 of which
𝑅 is a subring. In other words, a ring extension is an injective ring homomorphism
𝑅 → 𝐸 .

Exercise la.3□ Let 𝐹 be a field; prove that a ring homomorphism 𝐹 → 𝐸

is either the constant at zero homomorphism, or a ring extension (in particular,
if we insist on a ring homomorphism to preserve the multiplicative unit, all ring
homomorphisms from a field are ring extensions).

We denote a field extension 𝐸 of a field 𝐹 as 𝐸 |𝐹.

Exercise la.4□ Prove that an extension 𝐸 |𝐹 makes 𝐸 a vector space over 𝐹:
the extension is called finite if 𝐸 has finite dimension over 𝐹; note that being finite
for 𝐸 depends on 𝐹, by finding a field 𝐹1 such that 𝐸 |𝐹1 is finite, and an extension
𝐹1 |𝐹2 which is not finite, so that 𝐸 |𝐹2 is not finite.

Exercise la.5□ Prove that there exists a polynomial 𝑝 wih real coefficients, of
degree at most 3, such that 𝑝(𝑥 + 1) − 𝑝(𝑥) = 𝑥2. Determine 𝑝(𝑥). Use this result
to compute the sum

∑𝑛
𝑘=1 𝑘

2 of the squares of the first 𝑛 positive integers.

Exercise la.6□ Consider the vector space 𝐿 = R[𝑋]<𝑛 whose elements are
polynomials of degree at most 𝑛 − 1; prove that

• the standard basis: i.e. the set {1, 𝑥, . . . , 𝑥𝑛−1} is a basis of 𝐿; the
coordinates of a vector in this basis are its coefficients.
• the Taylor basis: for 𝑎 ∈ R, the set {1, 𝑥 − 𝑎, (𝑥 − 𝑎)2, . . . , (𝑥 − 𝑎)𝑛−1} is a

basis of 𝐿; the coordinates of a vector 𝑓 ∈ 𝐿 in this basis ar given by its sub-
sequent derivatives evaluated in 𝑎: { 𝑓 (𝑎), 𝑓 ′(𝑎), 𝑓

′′ (𝑎)
2 , . . . ,

𝑓 (𝑛−1) (𝑎)
(𝑛−1)! }.

45
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Is this still true if instead of polynomials with real coefficients, we take
polynomials wih coefficients in a finite field?
• interpolation basis: if 𝑎1, . . . , 𝑎𝑛 ∈ R are pairwise distinct elements of 𝐿,

define
𝑔𝑖 (𝑥) :=

∏
𝑗≠𝑖

𝑥 − 𝑎 𝑗
𝑎𝑖 − 𝑎 𝑗

. (4.1)

Then {𝑔1, . . . , 𝑔𝑛} is a basis of 𝐿; the coordinates of a vector 𝑓 ∈ 𝐿 in
this basis are given by the values { 𝑓 (𝑎1), . . . , 𝑓𝑎𝑛}.

Exercise la.7□ Let𝑊 ≤ 𝑉 be a subspace inclusion; the quotient vector space
𝑉/𝑊 consists of the vector space of equivalence classes of vectors of 𝑉 by the
relation

𝑣 ∼𝑊 𝑣′ ⇐⇒ 𝑣 − 𝑣′ ∈ 𝑊. (4.2)
Prove that ∼𝑊 is an equivalence relation, and in fact a congruence (𝑣 ∼𝑊 𝑣′ implies
𝑢+𝑣 ∼𝑊 𝑢+𝑣′ for all 𝑢 ∈ 𝑉); prove that the set of ∼𝑊 -equivalence classes becomes
a vector space if we define the sum [𝑣]+ [𝑣′] as [𝑣+𝑣′], and the scalar multiplication
𝑎[𝑣] as [𝑎𝑣].

Exercise la.8□ Find a geometric interpretation for the following quotient vector
spaces:

• R2/⟨(0, 1)⟩;
• R3/⟨(1, 0, 0), (0, 1, 1)⟩.

(Hint: represent the elements of the quotient space 𝑉/𝑊 , i.e. the ∼𝑊 -equivalence
classes, as [𝑣] = 𝑣 + 𝑊 = {𝑣 + 𝑤 | 𝑤 ∈ 𝑊}, i.e. as subsets of 𝑉 resulting as
translations of𝑊 by vectors of 𝑣; observe that in no case 𝑣 +𝑊 is a vector subspace
of 𝑉 : why? Show that for each 𝑣 ∈ 𝑉 , [𝑣] equals [𝑣⊥], where 𝑣⊥ is a vector
perpendicular to all vectors of𝑊 , in the sense that the scalar product 𝑣 ·𝑤 is zero for
every 𝑤 ∈ 𝑊 ; deduce that 𝑉/𝑊 can be identified with the set of such perpendicular
vectors.)

Exercise la.9□ Let 𝑓 : 𝑉 → 𝑊 be a linear maps between 𝐹-vector spaces;
the cokernel of 𝑓 is the quotient space𝑊/im 𝑓 , where two vectors 𝑤, 𝑤′ ∈ 𝑊 are
identified if and only if their difference lies in the image of 𝑓 ;

• prove that 𝑓 is surjective if and only if coker 𝑓 is the zero vector space;
• what is the cokernel of the zero map 0 : 𝑉 → 𝑊? What is the cokernel of

the inclusion of ⟨𝑣⟩ in R3 as 𝑣 varies through the vectors of R3?

Definition 4.1. Let 𝑉 be a 𝐹-vector space. Define the vector space 𝑉∗ (called
the dual of 𝑉) as the set hom(𝑉, 𝐹) of all 𝐹-linear homomorphisms from 𝑉 to 𝐹,
equipped with the obvious vector space structure given by (𝛼+ 𝛽) (𝑣) = 𝛼(𝑣) + 𝛽(𝑣)
and (𝑡 · 𝛼) (𝑣) = 𝑡 · 𝛼(𝑣) for every 𝑡 ∈ 𝐹, 𝑣 ∈ 𝑉 , 𝛼, 𝛽 : 𝑉 → 𝐹.

Exercise la.10□ Show that this defines a structure of 𝐹-vector space on
hom(𝑉, 𝐹).

Exercise la.11□ Let 𝑉 be a finite-dimensional 𝐹-vector space. Let V =

{𝑣1, . . . , 𝑣𝑛} be a basis of 𝑉 , and letV∗ = {𝛼1, . . . , 𝛼𝑛} be the set of vectors in 𝑉∗
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defined as follows: 𝛼𝑖 (𝑣 𝑗) = 1 if 𝑖 = 𝑗 and 0 otherwise. Show thatV∗ is a basis of
𝑉∗, called the dual basis associated toV.

Exercise la.12□ Show that to each 𝐹-linear map 𝑓 : 𝑉 → 𝑊 of vector spaces
one can associate the transposed map 𝑓 ∗ : 𝑊∗ → 𝑉∗ sending an element 𝛼 ∈ 𝑊∗
to the linear map

𝛼 ◦ 𝑓 : 𝑉
𝑓 // 𝑊

𝛼 // 𝐹 (4.3)

Exercise la.13□ Show that there exists a function

𝑉∗ ×𝑉 ◦ // 𝐹 (4.4)

called canonical duality which enjoys the following properties:
• bilinearity:
• nondegenerate:

Let 𝑆 be a subset of a vector space 𝑉 ; we define the orthogonal of 𝑆 in 𝑉∗ as
the subspace of 𝑉∗ as

𝑆⊥ := {𝛼 ∈ 𝑉∗ | 𝛼 ◦ 𝑣 = 0, ∀𝑣 ∈ 𝑆} (4.5)

Similarly, for a subset 𝑇 of 𝑉∗ we define the subspace 𝑇⊥ of 𝑉 as

𝑇⊥ := {𝑣 ∈ 𝑉 | 𝛼 ◦ 𝑣 = 0, ∀𝛼 ∈ 𝑇} (4.6)

Exercise la.14□ Prove that
• if 𝐴 ⊆ 𝐵 then 𝐵⊥ ⊆ 𝐴⊥;
• for every 𝑆 ⊆ 𝑉 , 𝑆⊥⊥ = ⟨𝑆⟩ is the subspace generated by 𝑆 (similarly for
𝑇 ⊆ 𝑉∗); moreover, 𝑆⊥⊥⊥ = 𝑆⊥ (and similarly for 𝑇 ⊆ 𝑉∗).
• (𝐴 ∩ 𝐵)⊥ = 𝐴⊥ + 𝐵⊥ and (𝐴 + 𝐵)⊥ = 𝐴⊥ ∩ 𝐵⊥ for subspaces 𝐴, 𝐵 ≤ 𝑉 .

In particular passing to the orthogonal induces an antiisoomrphism between the
lattices of subspaces of 𝑉 and 𝑉∗.

Exercise la.15□ Let 𝑓 : 𝑉 → 𝑊 be a linear map; show that ker( 𝑓 ∗) = (im 𝑓 )⊥
and im ( 𝑓 ∗) = (ker 𝑓 )⊥. Deduce that the rank of 𝑓 equals the rank of 𝑓 ∗

Exercise la.16□ Show that given a subspace 𝐴 ≤ 𝑉 of a finite dimensional
𝑘-vector space, the inclusion 𝐴 ↩→ 𝑉 induces a surjective linear map 𝑉∗ → 𝐴∗,
having kernel 𝐴⊥; deduce that (𝑉/𝐴)∗ � 𝐴⊥ as vector spaces.

Exercise la.17□ More generally, given subspaces𝑈 ≤ 𝑊 of the same 𝑉 show
that (𝑊/𝑈)∗ is isomorphic to𝑈⊥/𝑊⊥.

With this –but also directly– show that
• ((𝑈 +𝑊)/𝑊) � 𝑊⊥/(𝑈⊥ ∩𝑊⊥);
• (𝑊/(𝑈 ∩𝑊))∗ � (𝑈⊥ +𝑊⊥)/𝑊⊥.

Exercise la.18□ Show that the vector space Q[𝑋] of polynomials with rational
coefficients is not isomorphic to its dual Q[𝑋]∗.

Exercise la.19□ Sia 𝑔 : 𝑉 → 𝑊 una mappa lineare; dimostrare che l’equazione
𝑔(𝑣) = 𝑤 ammette una soluzione, fissao 𝑤 ∈ 𝑊 , se e solo se 𝑤 ∈ ker 𝑔∗, dove
𝑔∗ : 𝑊∗ → 𝑉∗ è la trasposta di 𝑔.
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Exercise la.20□ (Product of vector spaces.) Let 𝐼 be a set and 𝑉𝑖 a family
of 𝐹-vector spaces indexed by 𝐼; the product

∏
𝑖∈𝐼 𝑉𝑖 of the family 𝑉𝑖 is the set

obtained from the cartesian product of the 𝑉𝑖 and equipped with componentwise
sum and scalar multiplication.

Show that the canonical projections 𝜋 𝑗 :
∏
𝑖 𝑉𝑖 → 𝑉 𝑗 for 𝑗 ∈ 𝐼 is 𝐹-linear.

Show that
∏
𝑖 𝑉𝑖 enjoys the following property:

Given any other family of 𝐹-linear maps 𝑓𝑖 : 𝑊 → 𝑉𝑖 , there
exists a unique 𝑓 : 𝑊 →∏

𝑖 𝑉𝑖 which is 𝐹-linear and makes the
following diagram commute for every 𝑗 ∈ 𝐼:

𝑊

𝑓 𝑗 ��

𝑓 // ∏
𝑖 𝑉𝑖

𝜋 𝑗}}
𝑉 𝑗

(4.7)

Usually the notation for such an 𝑓 is
∏
𝑖 𝑓𝑖

Exercise la.21□ (Coproduct of vector spaces.) Let 𝐼 be a set and𝑉𝑖 a family of
𝐹-vector spaces indexed by 𝐼; the coproduct (or direct sum)

∑
𝑖∈𝐼 𝑉𝑖 of the family𝑉𝑖

is the subset of
∏
𝑖 𝑉𝑖 , equipped with componentwise sum and scalar multiplication,

whose elements are those sequences of vectors (𝑣𝑖 | 𝑖 ∈ 𝐼, 𝑣𝑖 ∈ 𝑉𝑖) such that 𝑣𝑖 ≠ 0
for at most a finite number of indices.

Show that this is indeed a vector subspace of
∏
𝑖 𝑉𝑖 , and that the inclusions

𝜄 𝑗 :
∑
𝑖 𝑉𝑖 → 𝑉 𝑗 are 𝐹-linear for every 𝑗 ∈ 𝐼.

Show that
∑
𝑖 𝑉𝑖 enjoys the following property:

Given any other family of 𝐹-linear maps 𝑓𝑖 : 𝑉𝑖 → 𝑊 , there
exists a unique 𝑓 :

∑
𝑖 𝑉𝑖 → 𝑊 which is 𝐹-linear and makes the

following diagram commute for every 𝑗 ∈ 𝐼:

𝑉 𝑗
𝑓 𝑗

��

𝜄 𝑗

}}∑
𝑖 𝑉𝑖

𝑓

// 𝑊

(4.8)

Usually the notation for such an 𝑓 is
∑
𝑖 𝑓𝑖 .

Exercise la.22□ Prove that if 𝐼 is a finite set and 𝑉𝑖 a family of vector spaces
indexed by 𝐼, then there is an isomorphism

∏
𝑖 𝑉𝑖 �

∑
𝑖 𝑉𝑖 (hint: start from 𝐼 = {1, 2}

a set with two elements).

Exercise la.23□ Let 𝑆 be a finite set of cardinality 𝑛; consider the vector space
𝑉 = { 𝑓 : 2𝑆 → R} of all functions from 2𝑆 to R, and the linear map 𝜑 : 𝑉 → 𝑉

given by
𝜑( 𝑓 ) : 𝑇 ↦→

∑︁
𝑌⊇𝑇

𝑓𝑌 (4.9)

Show that 𝜑 is an isomorphism of vector spaces. (Hint: induction on 𝑛.)
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Definition 4.2. Let 𝑘 ≥ 1 be an integer, andW = (𝑊1, . . . ,𝑊𝑘) andW′ =

(𝑊 ′1, . . . ,𝑊
′
𝑘
) be two 𝑘-tuples of subspaces of the same vector space 𝑉 ; we say that

W,W′ are concordant if there exists an invertible linear map 𝜑 : 𝑉 → 𝑉 such
that 𝜑(𝑊𝑖) = 𝑊 ′𝑖 for each 1 ≤ 𝑖 ≤ 𝑘 .

Exercise la.24□ Show that two tuples of subspaces W,W′ as above are
concordant if and only if for each 1 ≤ 𝑘 ≤ 𝑛 and each choice of indices (𝑖1, . . . , 𝑖𝑘)
there is a linear isomorphism 𝜑𝑖1...𝑖𝑘 : 𝑊𝑖1,...,𝑖𝑘 → 𝑊 ′

𝑖1,...,𝑖𝑘
, where we denote

𝑊𝑖1...𝑖𝑘 = 𝑊𝑖1 ∩ · · · ∩𝑊𝑖𝑘 .

Exercise la.25□ Show that a 𝑘-tupleW = (𝑊1, . . . ,𝑊𝑛) of subspaces of 𝑉
is equivalently described by its nerve: let again 𝑊𝑖1...𝑖𝑟 := 𝑊𝑖1 ∩ · · · ∩ 𝑊𝑖𝑟 and
consider the diagram

𝑘∑︁
𝑖=1
𝑊𝑖

𝜋1 //

𝜋2
//

∑︁
𝑖1<𝑖2

𝑊𝑖1𝑖2𝜄1oo 𝜋2 //

𝜋1 //

𝜋3
//

∑︁
𝑖1<𝑖2<𝑖3

𝑊𝑖1𝑖2𝑖3𝜄2oo
𝜄1oo

𝜋1 //

𝜋4
//

...
𝜄1oo
𝜄3oo · · · (4.10)

where the maps pointing to the right are induced by projections from the intersection
of 𝑖 elements of the tuple to the intersection of (𝑖 + 1) elements of the tuple, and the
arrows pointing to the left are induced by the inclusions from an intersection of 𝑖
elements to an intersection of (𝑖 − 1) elements of the tuple.

Given two of such diagrams, filled by the dotted arrows 𝜑𝑖1,...𝑖𝑟 below,

𝑘∑︁
𝑖=1
𝑊𝑖

∑
𝑖 𝜑𝑖

��

//
//
∑︁
𝑖1<𝑖2

𝑊𝑖1𝑖2
oo

∑
𝜑𝑖1𝑖2

��

//
//

//

∑︁
𝑖1<𝑖2<𝑖3

𝑊𝑖1𝑖2𝑖3oo
oo

∑
𝜑𝑖1𝑖2𝑖3

��

//
//

//

//
· · ·oo

oo

oo

𝑘∑︁
𝑖=1
𝑊 ′𝑖

//
//
∑︁
𝑖1<𝑖2

𝑊 ′𝑖1𝑖2
oo //

//

//

∑︁
𝑖1<𝑖2<𝑖3

𝑊 ′𝑖1𝑖2𝑖3oo
oo //

//

//

//
· · ·oo

oo

oo

(4.11)

the two 𝑘-tuples that they represent are concordant if and only if for each choice
of homonymous horizontal arrows pointing in the same direction, the resulting
diagram is commutative: in other words, all diagrams

𝑘∑︁
𝑖=1
𝑊𝑖

∑
𝑖 𝜑𝑖

��

𝜋1 //
∑︁
𝑖1<𝑖2

𝑊𝑖1𝑖2

∑
𝜑𝑖1𝑖2

��𝑘∑︁
𝑖=1
𝑊 ′𝑖 𝜋′1

//
∑︁
𝑖1<𝑖2

𝑊 ′𝑖1𝑖2

𝑘∑︁
𝑖=1
𝑊𝑖

∑
𝑖 𝜑𝑖

��

𝜋2 //
∑︁
𝑖1<𝑖2

𝑊𝑖1𝑖2

∑
𝜑𝑖1𝑖2

��𝑘∑︁
𝑖=1
𝑊 ′𝑖 𝜋′2

//
∑︁
𝑖1<𝑖2

𝑊 ′𝑖1𝑖2

𝑘∑︁
𝑖=1
𝑊𝑖

∑
𝑖 𝜑𝑖

��

∑︁
𝑖1<𝑖2

𝑊𝑖1𝑖2
𝜄1oo

∑
𝜑𝑖1𝑖2

��𝑘∑︁
𝑖=1
𝑊 ′𝑖

∑︁
𝑖1<𝑖2

𝑊 ′𝑖1𝑖2𝜄1
oo

etc., are commutative.

Exercise la.26□ Let 𝑞 be a prime number, and 𝑛 ≥ 1 an integer; build a field
having exactly 𝑞𝑛 elements by considering the roots of the polynomial 𝑋𝑞𝑛 − 𝑋;
prove that every finite field extension Z/𝑞Z arises in this way, or in other words,
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prove that if 𝐹 is a finite field of characteristic 𝑞, then it has 𝑞𝑛 elements for some
𝑛 ≥ 1, and it is the unique such field up to isomorphism.

Exercise la.27□ Let 𝑛 ≥ 1 be an integer. Prove that the number of sub-
spaces of the vector space 𝑉 = (Z/𝑞Z)𝑛 having dimension 𝑘 ≤ 𝑛 is the 𝑞-
binomial coefficient (

𝑛

𝑘

)
𝑞

:=
[𝑛]!𝑞

[𝑘]!𝑞 [𝑛 − 𝑘]!𝑞
(4.12)

where for every real number 𝑞 (so a fortiori for an integer) the quantity [𝑟]!𝑞 is
defined as (1 + 𝑞) (1 + 𝑞 + 𝑞2) . . . (1 + 𝑞 + · · · + 𝑞𝑟−1);

Exercise la.28□ Prove that the set of all invertible linear maps of𝑉 = (Z/𝑞Z)𝑛
onto itself has 𝑞(𝑛2) (𝑞 − 1)𝑛 [𝑛]!𝑞 elements.

Exercise la.29□ Let 𝐹 be a field, and𝐺 the subgroup of 𝑛× 𝑛matrices having
the property that

There exists exactly one 1 in each row and in each column.

Prove that there exists a group isomorphism between 𝐺 and the symmetric
group 𝑆(𝑛) of all permutations of an 𝑛-element set. Is the subgroup 𝐺 normal
in 𝐺𝐿𝑛 (𝐹)? Are the matrices in 𝐺 diagonalizable? Who is the characteristic
polynomial of a matrix Σ ∈ 𝐺?

Exercise la.30□ Let 𝐹 be a field; interpret the determinant

det :=
∑︁

𝜎∈𝑆 (𝑛)
(−1) |𝜎 |

𝑛∏
𝑖=1

𝑎𝑖,𝜎𝑖 (4.13)

of a generic 𝑛 × 𝑛 matrix with coefficients in 𝐹 as a polynomial in the 𝑛2 indeter-
minates {𝑎𝑖 𝑗 | 1 ≤ 𝑖, 𝑗 ≤ 𝑛}.

Prove that det is an irreducible polynomial in 𝐹 [𝑎𝑖 𝑗 | 1 ≤ 𝑖, 𝑗 ≤ 𝑛]. (Hint:
induction on 𝑛, starting from 𝑛 = 2.)

Exercise la.31□ Consider the 𝐹-vector space 𝐹𝑉×𝑊 =
∑
𝑉×𝑊 𝐹, and the

subspace generated by the relations
(𝑣1, 𝑤) + (𝑣2, 𝑤) ∼ (𝑣1 + 𝑣2, 𝑤),
(𝑣, 𝑤1) + (𝑣, 𝑤2) ∼ (𝑣, 𝑤1 + 𝑤2),
𝑐(𝑣, 𝑤) ∼ (𝑐𝑣, 𝑤),
𝑐(𝑣, 𝑤) ∼ (𝑣, 𝑐𝑤).

(4.14)

in 𝐹𝑉×𝑊 . Show that this quotient satisifies the universal property of the tensor
product 𝑉 ⊗𝑊 of 𝑉,𝑊 :

To each bilinear map 𝜑 : 𝑉 × 𝑊 → 𝑈 corresponds a unique
linear map 𝜑 : 𝑉 ⊗𝑊 → 𝑈, bĳectively.

Prove that when 𝑉,𝑊 have finite dimension over the field 𝐹, there is an iso-
morphism 𝑉 ⊗𝑊 � Bil(𝑉 ×𝑊, 𝐹)∗ (on the right hand side: the dual of the vector
space of bilinear maps 𝑉 ×𝑊 → 𝐹).
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Exercise la.32□ Prove that 𝑉 ⊗𝑊 has a basisV ⊗W = {𝑣𝑖 ⊗ 𝑤 𝑗}, when 𝑣𝑖
runs over a basis V of 𝑉 , and 𝑤 𝑗 runs over a basisW of 𝑊 . In the identification
𝑉 ⊗ 𝑊 � Bil(𝑉 × 𝑊, 𝐹)∗, to which elements of Bil(𝑉 × 𝑊, 𝐹)∗ does 𝑣𝑖 ⊗ 𝑤 𝑗
correspond?

Prove that 𝐹 ⊗ 𝐹 � 𝐹; prove that 𝑉 ⊗ 𝐹 � 𝑉 for each vector space 𝑉 ; prove
that 𝑉 ⊗ (𝑊 ⊗ 𝑍) � (𝑉 ⊗𝑊) ⊗ 𝑍; prove that 𝑉 ⊗𝑊 � 𝑊 ⊗ 𝑉 .

Exercise la.33□ Prove that each pair of linear maps 𝑓 : 𝑉 → 𝑉 ′, 𝑔 : 𝑊 → 𝑊 ′

induces a linear map 𝑓 ⊗ 𝑔 : 𝑉 ⊗ 𝑊 → 𝑉 ′ ⊗ 𝑊 ′; how is this map defined on the
basis V ⊗W of 𝑉 ⊗ 𝑊? Assume 𝑉,𝑉 ′,𝑊,𝑊 ′ all have finite dimension and fix
bases V,W,V′,W′ for all vector spaces in question; let 𝐴 be the matrix of 𝑓 ,
and 𝐵 be the matrix of 𝑔, an find an expression for the matrix of 𝑓 ⊗ 𝑔 in terms of
𝐴, 𝐵; the matrix 𝐴 ⊗ 𝐵 is called the Kronecker product of 𝐴, 𝐵.

Exercise la.34□ Show the following properties of the Kronecker product:
• given matrices 𝐴, 𝐵, 𝐶, prove that if 𝐴, 𝐵 have the same size,

(𝐴 + 𝐵) ⊗ 𝐶 = 𝐴 ⊗ 𝐶 + 𝐵 ⊗ 𝐶 𝐶 ⊗ (𝐴 + 𝐵) = 𝐶 ⊗ 𝐴 + 𝐶 ⊗ 𝐵;

• given matrices 𝐴, 𝐵, 𝐶 prove that

𝐴 ⊗ (𝐵 ⊗ 𝐶) = (𝐴 ⊗ 𝐵) ⊗ 𝐶 (4.15)

• if 𝐴, 𝐵, 𝐶, 𝐷 are matrices such that the matrix products 𝐴𝐶, 𝐵𝐷 exist, then
(𝐴 ⊗ 𝐵) (𝐶 ⊗ 𝐷) = 𝐴𝐶 ⊗ 𝐵𝐷; as a corollary, if 𝐴, 𝐵 are both invertible,
so is 𝐴 ⊗ 𝐵 and (𝐴 ⊗ 𝐵)−1 = 𝐴−1 ⊗ 𝐵−1;
• if 𝐴, 𝐵 are matrices, respecively 𝑛 × 𝑛 and 𝑚 × 𝑚, then

det(𝐴 ⊗ 𝐵) = (det 𝐴)𝑚(det 𝐵)𝑛 trace(𝐴 ⊗ 𝐵) = trace(𝐴)trace(𝐵). (4.16)

Exercise la.35□ The tensor algebra over a vector space 𝑉 is defined as the
vector space

𝑇𝑉 =
∑︁
𝑛≥0

𝑉⊗𝑛 (4.17)

equipped with the tensor product operation: two elements 𝑥1 ⊗ · · · ⊗ 𝑥𝑛 and 𝑦1 ⊗
· · · ⊗ 𝑦𝑚 can be multiplied into an element

𝑥1 ⊗ · · · ⊗ 𝑥𝑛 ⊗ 𝑦1 ⊗ · · · ⊗ 𝑦𝑚 ∈ 𝑉⊗(𝑛+𝑚) (4.18)

Prove that the tensor product operation equips 𝑇𝑉 with a graded algebra structure.
Prove that when𝑉 is finite dimensional, say with dimension 𝑑,𝑇𝑉 is isomorphic

–as algebra– to the algebra of noncommutative polynomials 𝑘{𝑋1, . . . , 𝑋𝑑}.

Exercise la.36□ For what has been shown in la.35 𝑇𝑉 is a ring;
• Describe the ideal 𝐼 in (𝑇𝑉, ⊗) generated by the set 𝑆 = {𝑣 ⊗ 𝑤 − 𝑤 ⊗ 𝑣 |
𝑣, 𝑤 ∈ 𝑉}; prove that the quotient 𝑇𝑉/𝐼 is isomorphic to the ring o
polynomials 𝑘 [𝑋1, . . . , 𝑋𝑑]; define explicitly the isomorphism.
• Describe the ideal 𝐽 generated by the set {𝑣 ⊗ 𝑤 + 𝑤 ⊗ 𝑣 | 𝑣, 𝑤 ∈ 𝑉};

prove that 𝐽 is also generated by the set {𝑣 ⊗ 𝑣 | 𝑣 ∈ 𝑉};
• Fix a basis {𝑒1, . . . , 𝑒𝑛} of 𝑉 . Describe the ideal 𝐿 generated by the set
{𝑒𝑖 ⊗ 𝑒𝑖 − 1, 𝑒𝑖 ⊗ 𝑒 𝑗 + 𝑒 𝑗 ⊗ 𝑒𝑖 | 𝑒𝑖 , 𝑒 𝑗 ∈ 𝑉}.
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The quotient 𝑇𝑉/𝐽 is the exterior (or Grassmann) algebra
∧(𝑉) of 𝑉 constructed

from the tensor algebra. The quotient 𝑇𝑉/𝐿 is the Clifford algebra 𝐶𝑙 (𝑉) of 𝑉 .
See la.37 for more information on the Grassmann algebra; see Definition 4.5 for
more information on the Clifford algebra.

Exercise la.37□ Prove that the tensor product operation on 𝑇𝑉 induces a
multiplication

_ ∧ _ :
∧(𝑉) ×∧(𝑉) // ∧(𝑉) (4.19)

on the quotient that defines
∧(𝑉).

Exercise la.38□ Prove that in fact the ideal 𝐽 such that
∧(𝑉) � 𝑇𝑉/𝐽 is a

graded ideal: there exists a decomposition 𝐽 =
⊕

𝑟≥0 𝐽𝑟 where 𝐽𝑟 := 𝐽 ∩𝑉⊗𝑟 such
that if we pose

∧
𝑟 (𝑉) := 𝑉⊗𝑟/𝐽𝑟 there exists a decomposition∧

(𝑉) �
⊕
𝑟≥0

∧
𝑟

(𝑉) (4.20)

Note that
∧

0(𝑉) � 𝐹 (the base field) and
∧

1(𝑉) � 𝑉 , so that there exists a
canonical 𝐹-linear map 𝑗 : 𝑉 ↩→ ∧(𝑉).

Exercise la.39□ Prove that if𝑉 has dimension 𝑑 and 𝑟 > 𝑑, then
∧
𝑟 (𝑉) � (0)

(the zero vector space). In fact, prove that a basis of
∧
𝑟 (𝑉) can be found, once a

basisV = {𝑒1, . . . , 𝑒𝑑} of 𝑉 has been fixed, taking the elements

𝑒𝑖1 ∧ · · · ∧ 𝑒𝑖𝑟 (4.21)

where 1 ≤ 𝑖1 < · · · < 𝑖𝑟 ≤ 𝑑. From this, dim𝐹

∧
𝑟 (𝑉) =

(𝑑
𝑟

)
.

Exercise la.40□ Prove the universal property of
∧(𝑉):

Gven a 𝐹-algebra (𝐴, ·) and a 𝐹-linear map 𝑓 : 𝑉 → 𝐴 such that
for each 𝑣 ∈ 𝑉 , 𝑓 𝑣 · 𝑓 𝑣 = 0 in 𝐴, there exists a unique extension
𝑓 :

∧(𝑉) → 𝐴 in

𝑉
𝑗

||

𝑓

��∧(𝑉)
𝑓

// 𝐴

(4.22)

that makes the diagram commute.

Exercise la.41□ As a corollary of the above universal property, given any linear
map 𝑓 : 𝑉 → 𝑊 of vector spaces, there exists a unique 𝑗 𝑓 =

∧
𝑓 :

∧(𝑉) → ∧(𝑊)
such that the diagram

𝑉
𝑓 //

𝑗𝑉
��

𝑊

𝑗𝑊
��∧(𝑉) ∧

𝑓

// ∧(𝑊) (4.23)

is commutative.

Exercise la.42□ Show that
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• ∧
𝑓 is uniquely determined by the request that

∧
𝑓 (𝑣1 ∧ · · · ∧ 𝑣𝑟 ) =

𝑓 𝑣1 ∧ · · · ∧ 𝑓 𝑣𝑟 for every 𝑟 ≥ 1 and 𝑣1, . . . , 𝑣𝑟 ∈ 𝑉 ;
• ∧(𝑔 ◦ 𝑓 ) = ∧

𝑔 ◦∧ 𝑓 for;
• ∧(id𝑉 ) = id∧𝑉 .

Exercise la.43□ Let 𝑥 ∈ ∧
𝑟 (𝑉), 𝑦 ∈

∧
𝑠 (𝑉); then 𝑦 ∧ 𝑥 = (−1)𝑟𝑠𝑥 ∧ 𝑦; in

particular, the exterior product is anticommutative, i.e. for any vectors 𝑣, 𝑤 one has
𝑣 ∧ 𝑤 = −𝑤 ∧ 𝑣.

Exercise la.44□ Let {𝑊𝑖 | 𝑖 ∈ 𝐼}be a family of 𝐹-vector spaces; prove the
isomorphism

𝑉 ⊗
(⊕

𝑖∈𝐼𝑊𝑖
)
�
⊕

𝑖∈𝐼 𝑉 ⊗𝑊𝑖 (4.24)
and deduce that ∧(𝑉) ⊗∧(𝑊) �⊕

𝑟 ,𝑠≥0
∧
𝑟 (𝑉) ⊗

∧
𝑠 (𝑊) (4.25)

a relation from which one can prove the exponential property for
∧(_):∧(𝑉 ⊕𝑊) � ∧(𝑉) ⊗∧(𝑊) (4.26)

Use the exponential property to find the dimension of
∧(𝑉) by induction on 𝑑 =

dim𝐹 𝑉 .

Exercise la.45□ Let 𝑓 : 𝑉 → 𝑊 be a linear map of 𝐹-vector spaces; consider
the induced map ∧

𝑓 :
∧(𝑉) // ∧(𝑊) (4.27)

between the exterior algebras.
Find a matrix expression for

∧
𝑓 once bases V = {𝑣1, . . . , 𝑣𝑛} and W =

{𝑤1, . . . , 𝑤𝑚} of 𝑉,𝑊 respecively have been fixed.

Definition 4.3. A super vector space is a vector space 𝑉 over a field 𝑘 that
can be decomposed as a direct sum 𝑉 = 𝑉0 ⊕ 𝑉1; the elements of the form (𝑣, 0)
for 𝑣 ∈ 𝑉0 are called even, while the elements (0, 𝑣) for 𝑣 ∈ 𝑉1 are called odd.
A homomorphism of super vector spaces 𝑉,𝑊 is a linear map 𝑓 : 𝑉 → 𝑊 that
preserves the parity of elements (equivalently: such that 𝑓 (𝑉0) ⊆ 𝑊0, 𝑓 (𝑉1) ⊆ 𝑊1).

Exercise la.46□ Define the dimension of a super vector space𝑉 to be dim𝑉 =

dim𝑉0 − dim𝑉1. Define the direct sum and intersection of super vector subspaces
(define them first!), or prove that it doesn’t always exist. Does the Grassmann
formula still hold true?

Exercise la.47□ How to define the cartesian product of super vector spaces
𝑉,𝑊? How to define their direct sum? Is it still true that finite products and finite
coproducts coincide,

∏𝑛
𝑖=0𝑉𝑖 �

∑𝑛
𝑖=0𝑉𝑖 , as it happens for vector spaces? [Hint: the∏

and
∑

constructions should coincide with the usual ones for ‘purely even’ super
vector spaces, i.e. it should be true that

(𝑉, 0) × (𝑊, 0) � (𝑉 ×𝑊, 0) (𝑉, 0) ⊕ (𝑊, 0) � (𝑉 ⊕𝑊, 0). (4.28)

Given this, find a definition for the ‘purely odd’ case and for the mixed case.]
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Definition 4.4. An exact sequence of linear maps is a string of vector spaces
and composable linear maps

𝔳 : 𝑉0
𝑓0−→ 𝑉1

𝑓1−→ · · ·
𝑓𝑛−−→ 𝑉𝑛+1 (4.29)

such that ker 𝑓𝑖+1 = im 𝑓𝑖 for every 𝑖 = 0, . . . , 𝑛.

Note that this defining property implies in particular that 𝑓𝑖+1 ◦ 𝑓𝑖 = 0; when
this weaker condition is satisfied we say that the sequence of spaces and linear maps
forms a chain complex (so every exact sequence is a chain complex, but the converse
does not hold). If 𝔳 is a complex, the quotient spaces 𝐻𝑖 (𝔳) = ker 𝑓𝑖+1/im 𝑓𝑖 are an
intrinsic invariant of the complex and of great theoretical interest.

Exercise la.48□ Let

0→ 𝑈 → 𝑉 → 𝑊 → 0 (4.30)

be an exact sequence; show that dim𝑈 − dim𝑉 + dim𝑊 = 0; more generally, let

𝔳 : 0→ 𝑉1 → 𝑉2 → · · · → 𝑉𝑛 → 0 (4.31)

be an exact sequence; show that the alternating sum of dimensions
∑(−1)𝑖 dim𝑉𝑖

equals 0.

This leads to the following definition, valid for every complex: let

𝔳 : 0→ 𝑉1 → 𝑉2 → · · · → 𝑉𝑛 → 0 (4.32)

be a complex of vector spaces; we define the following objects:
• the 𝑖-th cohomology group𝐻𝑖 (𝔳) is defined as the quotient ker 𝑓𝑖+1/im 𝑓𝑖 ,

and the total cohomology of 𝔳 is defined as
∑
𝐻𝑖 (𝔳);

• the 𝑖-th Betti number 𝑏 𝑗 (𝔳) of 𝔳 is defined as dim𝐻𝑖 (𝔳);
• the Euler characteristic of 𝔳 is defined as the signed sum

∑(−1) 𝑗𝑏 𝑗 (𝔳).
Exercise la.49□ Now, let

𝔳 : 0→ 𝑉1 → 𝑉2 → · · · → 𝑉𝑛 → 0 (4.33)

be a complex and let 𝑑 𝑗 = dim𝑉 𝑗 ; show that the following conditions are equivalent:
• the complex 𝔳 is exact;
• each 𝐻𝑖 (𝔳) is zero;
• the Euler characteristic of th complex,

∑(−1) 𝑗𝑑 𝑗 , is zero.

Let 𝑅 be a (commutative, unital) ring; an 𝑅-module consists of the exact same thing
a vector space is, with the only difference that the ‘scalar multiplication’ operation
now takes values in 𝑅, a ring that is not necessarily a field. This seemingly
innocuous difference generates a lot of differences between the theory of modules
and the theory of vector spaces.

Exercise la.50□ What is a module over the ring R[𝑋] of polynomials with
real coefficients?

Exercise la.51□ Let 𝐼 be a set; a family of 𝑅-modules 𝑀𝑖 is a set {𝑀𝑖 | 𝑖 ∈ 𝐼}
of modules over 𝑅; the direct sum of a family of 𝑅-modules is a module

∑
𝑖∈𝐼 𝑀𝑖

such that the following properties are satisfied:
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• There exists a family of 𝑅-linear maps {𝜄 𝑗 : 𝑀 𝑗 →
∑
𝑖∈𝐼 𝑀𝑖 | 𝑗 ∈ 𝐼} such

that
• given any other family of 𝑅-linear maps { 𝑓 𝑗 : 𝑀 𝑗 → 𝑋 | 𝑗 ∈ 𝐼}, there

exists a unique 𝑓 :
∑
𝑖∈𝐼 𝑀𝑖 → 𝑋 such that 𝑓 ◦ 𝜄 𝑗 = 𝑓 𝑗 .

Prove that whenever another object
∑★
𝑖∈𝐼 𝑀𝑖 satisfies the same properties, then there

exists a unique isomorphism
∑★
𝑖∈𝐼 𝑀𝑖 �

∑
𝑖∈𝐼 𝑀𝑖 .

Exercise la.52□ The direct product of a family of 𝑅-modules 𝑀𝑖 is the
module

∏
𝑖∈𝐼 𝑀𝑖 such that

• There exists a family of 𝑅-linear maps {𝜋 𝑗 :
∏
𝑖∈𝐼 𝑀𝑖 → 𝑀 𝑗 | 𝑗 ∈ 𝐼}

such that
• given any other family of 𝑅-linear maps { 𝑓 𝑗 : 𝑋 → 𝑀 𝑗 | 𝑗 ∈ 𝐼}, there

exists a unique 𝑓 : 𝑋 →∏
𝑖∈𝐼 𝑀𝑖 such that 𝜋 𝑗 ◦ 𝑓 = 𝑓 𝑗 .

Prove that whenever another object
∏★
𝑖∈𝐼 𝑀𝑖 satisfies the same properties, then

there exists a unique isomorphism
∏★
𝑖∈𝐼 𝑀𝑖 �

∏
𝑖∈𝐼 𝑀𝑖 .

Exercise la.53□ Prove that when 𝐼 is a finite set,
∏
𝑖∈𝐼 𝐴𝑖 �

∑
𝑖∈𝐼 𝐴𝑖 .

Exercise la.54□ Is it true or false that
∏
𝑖∈𝐼

∑
𝑗∈𝐽 𝐴𝑖 𝑗 �

∑
𝑗∈𝐽

∏
𝑖∈𝐼 𝐴𝑖 𝑗 , for

every family fof 𝑅-modules {𝐴𝑖 𝑗 | (𝑖, 𝑗) ∈ 𝐼 × 𝐽}?

Exercise la.55□ Prove that given an 𝑅-module 𝑀 and a set 𝐼, one has 𝑀 �∑
𝑖∈𝐼 𝑀𝑖 if and only if one can find homomorphisms 𝜇 𝑗 : 𝑀 𝑗 → 𝑀 and 𝜌 𝑗 : 𝑀 →

𝑀 𝑗 for each 𝑗 ∈ 𝐼 satisfying the following properties:
• 𝜌𝑖 ◦ 𝜇𝑖 = id𝑀 𝑗

for each 𝐼 ∈ 𝐼;
• 𝜌𝑖 ◦ 𝜇 𝑗 = 0 for each 𝑖, 𝑗 ∈ 𝐼, 𝑖 ≠ 𝑗 ;
• 𝜌𝑖 (𝑥) = 0 for each 𝑥 ∈ 𝑀 , for almost all indices 𝑖 ∈ 𝐼;1
• ∑

𝑖∈𝐼 𝜇
𝑖 ◦ 𝜌𝑖 = id𝑀 .

Exercise la.56□ An 𝑅-module 𝑀 is called free if it is of the form 𝑅 (Γ) =∑
𝛾∈Γ 𝑅, for a set Γ.

Find an 𝑅-module that is not free, when 𝑅 = Z; show that a Z-module is free
when ‘it has a basis’ in the sense of vector spaces (but be careful, it is possible to
find rings where free modules do not have a well-defined dimension).

Exercise la.57□ Prove that if 𝑀 is a free module over an infinite set of
generators, then 𝑀 � 𝑀 ⊕ 𝑀; deduce that there is an isomorphism between the
abelian groups End(𝑀) and End(𝑀) × End(𝑀). Is this isomorphism also a ring
isomorphism?

Exercise la.58□ Let

𝐿
𝑢1 //

𝑓

��

𝑀
𝑢2 //

𝑔

��

𝑁
𝑢3 //

ℎ
��

0

0
𝑑1

// 𝐿′
𝑑2

// 𝑀 ′
𝑑3

// 𝑁 ′

(4.34)

1A notation with which it’s better to familiarise soon: almost all elements of a set means ‘all, but
possibly a finite number’.
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be a diagram of 𝐹-linear maps between vector spaces, with the property that the
rows are exact sequences (cf. Definition 4.4). Show that there exists an exact
sequence

ker 𝑓 → ker 𝑔 → ker ℎ→ coker 𝑓 → coker 𝑔 → coker ℎ (4.35)

where coker 𝑓 is the ‘cokernel’ of 𝑓 , i.e. the quotient space 𝐿′/im 𝑓 , and similarly
for coker 𝑔 and coker ℎ.

Exercise la.59□ The tensor product 𝑉 ⊗s 𝑊 of two super vector spaces 𝑉 =

(𝑉0, 𝑉1) and 𝑊 = (𝑊0,𝑊1) over the same field 𝐹 is the usual vector space 𝑉 ⊗𝑊
equipped with the Z/2Z-graduation

(𝑉 ⊗𝑊)𝑙 =
∑︁

𝑖+ 𝑗=𝑙 mod 2
𝑉𝑖 ⊗𝑊 𝑗

. What is the universal property of this object?

Exercise la.60□ Show that there exists a super vector space 𝐽 acting as ‘the
square root of −1’, in the sense that 𝐽 is not the tensor unit and 𝐽 ⊗s 𝐽 � 𝐹.

A super algebra over a field 𝐹 is a super vector space 𝑉 equipped with an
𝐹-bilinear multiplication operation: this means that there is an operation 𝑉 ×𝑉 →
𝑉 : (𝑎, 𝑏) ↦→ 𝑎 · 𝑏, such that (𝑎 + 𝑏) · 𝑐 = 𝑎 · 𝑐 + 𝑏 · 𝑐 and 𝑎 · (𝑏 + 𝑐) = 𝑎 · 𝑏 + 𝑎 · 𝑐,
and (𝛼𝑎) · (𝛽𝑏) = 𝛼𝛽(𝑎 · 𝑏) for each 𝑎, 𝑏, 𝑐 ∈ 𝑉 and 𝛼 ∈ 𝐹).

Definition 4.5. Given a vector 𝑣 ∈ R2 define a binary operation, the Clifford
norm, as follows:

(𝑎1𝑒1 + 𝑎2𝑒2) • (𝑎1𝑒1 + 𝑎2𝑒2) = 𝑎2
1𝑒1 • 𝑒1 + 𝑎2

2𝑒2 • 𝑒2 + 𝑎1𝑎2(𝑒1 • 𝑒2 + 𝑒2 • 𝑒1)

where (𝑎1, 𝑎2) are the coordinates of 𝑣 in the standard basis of R2. Now, if on this
expression we impose the relation 𝑣 • 𝑣 = 𝑣 · 𝑣 ∈ R (where 𝑣 · 𝑣 is the scalar product
of vectors), from the above equation we get that

𝑒𝑖 • 𝑒𝑖 = 1 𝑒1 • 𝑒2 = −𝑒2 • 𝑒1.

Define the Clifford algebra 𝐶𝑙 (2,R) as the set of elements of the form 𝑎 + 𝑏1𝑒1 +
𝑏2𝑒2+𝑐𝑒12, where 𝑎 ∈ R is the scalar part of a Clifford vector 𝑥, ®𝑏 = (𝑏1, 𝑏2) ∈ R2

the vector part of 𝑥, and 𝑐 ∈ R its bivector part (where for the sake of brevity we
write 𝑒12 = 𝑒1 •𝑒2); each of these three parts is a different homogeneous component
of 𝑥 ∈ 𝐶𝑙 (2,R).

Exercise la.61□ The set 𝐶𝑙 (2,R) is a vector space, where the vector space
operations are done componentwise (with the sum in R in the scalar and bivector
part, and with the sum in R2 in the vector part). Prove that this is in fact a vector
space.

Exercise la.62□ Find an explicit formula for the Clifford product of two ele-
ments of 𝐶𝑙 (2,R):

(𝑥 + ®𝑦 + 𝑧) • (𝑥′ + ®𝑦′ + 𝑧′) = . . . (4.36)

Exercise la.63□ Prove that the Clifford product of two homogeneous elements
of vector type, 𝑣 = (𝑣1, 𝑣2), 𝑤 = (𝑤1, 𝑤2) sn’t homogeneous any more, and in
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fact it decomposes as a nontrivial scalar part plus a nontrivial bivectorial part: the
Clifford product of two vectors in 𝐶𝑙 (2,R) is

®𝑣 • ®𝑤 = ®𝑣 · ®𝑤 + (®𝑣 ∧ ®𝑤)𝑒12

where ®𝑣 · ®𝑤 = 𝑣1𝑤1 + 𝑣2𝑤2 is the dot product of vectors and ®𝑣 ∧ ®𝑤 = 𝑣1𝑤2 − 𝑣2𝑤1
their cross product.

Exercise la.64□ As a consequence of the previous exercise, prove the relations
• ®𝑣 · ®𝑤 = 1

2 (®𝑣 • ®𝑤 + ®𝑤 • ®𝑣);
• ®𝑣 ∧ ®𝑤 = 1

2 (®𝑣 • ®𝑤 − ®𝑤 • ®𝑣);
• ®𝑎 ∥ ®𝑏 ⇐⇒ ®𝑎 ∧ ®𝑏 = 0 ⇐⇒ ®𝑎 • ®𝑏 = ®𝑎 · ®𝑏;
• ®𝑎 ⊥ ®𝑏 ⇐⇒ ®𝑎 · ®𝑏 = 0 ⇐⇒ ®𝑎 • ®𝑏 = ®𝑎 ∧ ®𝑏.

Exercise la.65□ Prove that the assignment sending 1 ↦→ I2 (the 2 × 2 identity
matrix), 𝑒1 ↦→

( 1
−1

)
, 𝑒2 ↦→

( 1
1

)
, 𝑒12 ↦→

( 1
−1

)
defines an algebra isomorphism

𝜃 between𝐶𝑙 (2,R) and 𝑀2(R) (the algebra of 2×2 matrices with real coefficients);
does this isomorphism depend on the choice we made for a basis of the two spaces?

Exercise la.66□ Translate the matrix operations on 𝑀2(R) into operations in
𝐶𝑙 (2,R) along the isomorphism of la.65:

• transposition of a matrix corresponds to changing the sign of the bivector
part in the associated Clifford vector 𝒖: if 𝒖 and the matrix 𝐴 correspond
each other under 𝜃, then 𝐴𝑡 corresponds to the Clifford vector �̃� = 𝑢0 +
𝑢1𝑒1 + 𝑢2𝑒2 − 𝑢12𝑒12;
• inversion of a matrix corresponds to taking the Clifford conjugate of 𝒖:

if 𝒖 and the matrix 𝐴 correspond each other under 𝜃, and 𝐴 is invertible,
then 𝐴−1 corresponds to the Clifford vector 𝒖 = 𝑢0−𝑢1𝑒1−𝑢2𝑒2−𝑢12𝑒12.

Exercise la.67□ Prove that (̃−), (−) are involutive algebra antiautomorphisms:˜̃𝒖 = 𝒖 = 𝒖, 𝒖𝒗 = �̃��̃�, 𝒖𝒗 = 𝒗 𝒖. How do �̃�, �̃� relate to each other?

Exercise la.68□ Show that 𝐶𝑙 (2,R) contains a subalgebra isomorphic to the
field C of complex numbers, represented as the set of matrices{(

𝑎 −𝑏
𝑏 𝑎

)
| 𝑎, 𝑏 ∈ R

}
� {𝑎 + 𝑏𝑒12 | 𝑎, 𝑏 ∈ R}

with real entries; in fact, 𝑒12 behaves like the imaginary unit, in that there exists a
decomposition 𝐶𝑙 (2,R) �

(
R ⊕ 𝑒12R

)
⊕
(
𝑒1R ⊕ 𝑒2R

)
(prove it!).

Prove that this decomposition makes 𝐶𝑙 (2,R) a super algebra.
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Part 2

Category theory
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Short introduction. Category theory was born in 1945 with the work of
Eilenberg and Mac Lane in algebraic topology, who wanted to axiomatise the
situation when a family of functions

𝛼𝑋 : 𝐴𝑋 → 𝐵𝑋

is constructed for each set 𝑋 , and it varies accordingly to the presence of a function
𝑓 : 𝑋 → 𝑌 in the sense that the two functions 𝛼𝑋 and 𝛼𝑌 are connected by a path
like the following:

𝐴𝑋 //

��

𝐵𝑋

��
𝐴𝑌 // 𝐵𝑌

Very rapidly, however, category theory invested the rest of Mathematics and contam-
inated abstract algebra, formal logic, differential and algebraic geometry, represen-
tation theory, touching to some deep extent even mathematical physics, probability
theory, and combinatorics.

For a computer scientist, the most natural entry point to category theory is the
following observation: in 1935, Gerhard Gentzen developed a profound approach to
Hilbert’s proof theory, in which formal laws for deriving logical entailments 𝐴 ⊢ 𝐵
(i.e., the premises in 𝐴 lead to the conclusion in 𝐵) were carefully axiomatised. In
1940, Alonzo Church developed 𝜆-calculus –and that move was considered very
bold by many, as 𝜆-calculus can be considered the first programming language ever
invented. In 1962 William Howard noted, together with Haskell Curry, that these
two things are essentially the same.

Category theory is a third thing, equal to both.
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CHAPTER 5

Categories, functors, naturality

Exercise cf.1□ Verify that the following are examples of categories:

ce1) the empty category, having no objects and no morphisms; the category
with a single object • and a single morphism 1• : • → •, playing the role
of identity; the category with a single object •, an identity morphism 1•
and a non-identity morphism 𝑒 : • → • subject to the relation 𝑒◦𝑒 = 𝑒; the
category with a single object •, an identity morphism 1• and a non-identity
morphism 𝑒 : • → • subject to the relation 𝑒 ◦ 𝑒 = 1•.

ce2) Set: objects are set, morphisms are functions between sets, composition
is composition of functions, the identity of a given set 𝐴 is the identity
function 𝐴→ 𝐴 : 𝑎 ↦→ 𝑎.

ce3) Alg(𝑇): A signature is a family 𝑇 = (𝑛𝑖)𝑖∈𝐼 of natural numbers 𝑛𝑖 ,
indexed by a set 𝐼. Let 𝑇 = (𝑛𝑖) be a signature; define a category Alg(𝑇)
as follows: A 𝑇-algebra is a pair (𝑋, (𝑡𝑖)𝑖∈𝐼 ) consisting of a set 𝑋 and
a family of functions 𝑡𝑖 : 𝑋𝑛𝑖 → 𝑋 , called 𝑛𝑖-ary operations on 𝑋 . A
𝑇-homomorphism

𝑓 : (𝑋, (𝑡𝑖)𝑖∈𝐼 ) // (𝑌, (𝑠𝑖)𝑖∈𝐼 ) (5.1)

is a function 𝑓 : 𝑋 → 𝑌 for which the diagram

𝑋𝑛𝑖
𝑓 𝑛𝑖 //

𝑡𝑖
��

𝑌𝑛𝑖

𝑠𝑖

��
𝑋

𝑓

// 𝑌

(5.2)

is commutative, meaning that for every operation 𝑡𝑖 : 𝑋𝑛𝑖 → 𝑋, 𝑠𝑖 :
𝑌𝑛𝑖 → 𝑌 and every 𝑛𝑖-tuple of elements 𝑥1, . . . 𝑥𝑛𝑖 one has

𝑓 (𝑡𝑖 (𝑥1, . . . , 𝑥𝑛𝑖 )) = 𝑠𝑖 ( 𝑓 𝑥1, . . . , 𝑓 𝑥𝑛𝑖 ) (5.3)

Make precise the fact that as a corollary, all classes of algebraic struc-
tures form categories, when homomorphisms of structure are chosen as
morphisms.

ce4) Rel: objects are sets; given sets 𝐴, 𝐵, the set of morphisms 𝐴→ 𝐵 is the
powerset of 𝐴 × 𝐵, Rel(𝐴, 𝐵) := 2𝐴×𝐵. Given a relation 𝑅 ∈ 2𝐴×𝐵 and a
relation 𝑆 ∈ 2𝐵×𝐶 , define the composition 𝑆 ◦ 𝑅 ∈ 2𝐴×𝐶 as the subset

(𝑎, 𝑐) ∈ 𝑆 ◦ 𝑅 ⇐⇒ ∃𝑏 ∈ 𝐵, (𝑎, 𝑏) ∈ 𝑅, (𝑏, 𝑐) ∈ 𝑆. (5.4)
61
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Prove that this defines an associative composition operation.1 Given this
composition law, there is only one possible choice for the identity relation
𝐼 ⊂ 𝐴 × 𝐴: find it. What relations, inside Rel, are functional? Argue that
Rel contains the category Set of ce2.

ce5) Pred: the category of predicates, having objects the pairs (𝐴, 𝑋) where 𝐴
is a subset of 𝑋 , and where morphisms (𝐴, 𝑋) → (𝐵,𝑌 ) are the functions
𝑓 : 𝑋 → 𝑌 such that 𝑓 (𝑎) ∈ 𝐵 for each 𝑎 ∈ 𝐴;

ce6) Set∗: the category obtained from the previous one, restricting to the
objects (𝐴, 𝑋) for which 𝐴 is a set with a single element. Make precise
the statement that this is the category of ‘pointed sets’ and ‘basepoint-
preserving functions’.

ce7) (Various categories of spaces) There exist various categories having
topological spaces as objects; a topological space is a set 𝑋 equipped
with a family of subsets 𝜏 ⊆ 𝑃𝑋 with the property that if 𝑈,𝑉 ∈ 𝜏 then
𝑈 ∩ 𝑉 ∈ 𝜏 and if 𝑈∗ : 𝐼 → 𝑃𝑋 is any family (𝑈𝑖 | 𝑖 ∈ 𝐼) of subsets,
each of which is an element of 𝜏 then

⋃
𝑈𝑖 ∈ 𝜏. Define a category Top of

topological spaces with the following choice of morphisms:

A function 𝑓 : (𝑋, 𝜏𝑋) → (𝑌, 𝜏𝑌 ) is a
homomorphism of topological spaces (or a continu-
ous function for short) if for every 𝑉 ∈ 𝜏𝑌 the set
𝑓←𝑉 = {𝑥 ∈ 𝑋 | 𝑓 𝑥 ∈ 𝑉} belongs to 𝜏𝑋.

Investigate whether the following alternative definition gives rise to a
category, or exhibit the precise reason why it does not:

A function 𝑓 : (𝑋, 𝜏𝑋) → (𝑌, 𝜏𝑌 ) is an open map if
for every 𝑈 ∈ 𝜏𝑋 the set 𝑓𝑈 = { 𝑓 𝑥 | 𝑥 ∈ 𝑈} belongs
to 𝜏𝑌 .

ce8) Par: the category having objects sets, and morphisms 𝐴 → 𝐵 the func-
tions 𝑓 : 𝐴→ 𝐵, possibly defined only on a subset𝐷 of 𝐴 (the ‘domain’).2
How does this request affect the composition operation (the usual function
composition) and the choice of identity morphisms? Make precise the
statement that the categories Par and Set∗ ‘look very much alike’.

ce9) Σ-Seq: the category of (sequential) Σ-acceptors, where Σ is a finite set
of input symbols, Σ = {𝜎1, . . . , 𝜎𝑛}. An object of Σ-Seq is a quadruple
(𝑄, 𝛿, 𝑞0, 𝐹), where𝑄 is a finite set of states, 𝛿 : Σ×𝑄 → 𝑄 is a transition
map, 𝑞0 ∈ 𝑄 is the initial state, and 𝐹 ⊆ 𝑄 is the set of final states.

A morphism 𝑓 : (𝑄, 𝛿, 𝑞0, 𝐹) → (𝑄′, 𝛿′, 𝑞′0, 𝐹
′) (called a simulation)

between Σ-acceptors is a function 𝑓 : 𝑄 → 𝑄′ that preserves

1If C is a class of sets, we say that a family of functions { 𝑓𝑋𝑌𝑍 : 𝑋 ×𝑌 → 𝑍} indexed by the elements
𝑋,𝑌, 𝑍 ∈ C is associative if

𝑓𝑊𝑍𝑈 (𝑤, 𝑓𝑋𝑌𝑍 (𝑥, 𝑦)) = 𝑓𝑍𝑌𝑈 ( 𝑓𝑊𝑋𝑍 (𝑤, 𝑥), 𝑦)
for every tuple 𝑋,𝑌, 𝑍,𝑈,𝑊 and elements for which this is meaningful. In the present case this
evidently translates into the familiar associativity of composition 𝑢 ◦ (𝑣 ◦ 𝑤) = (𝑢 ◦ 𝑣) ◦ 𝑤.
2For example, the function 𝑓 : R→ R : 𝑥 ↦→ 𝑥+1

𝑥−1 is a morphism in Par, but not in Set.
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• transitions, i.e., 𝛿′(𝜎, 𝑓 (𝑞)) = 𝑓 (𝛿(𝜎, 𝑞)),
• the initial state, i.e., 𝑓 (𝑞0) = 𝑞′0, and
• the final states, i.e., 𝑓 [𝐹] ⊆ 𝐹′.

ce10) Aut: the category of automata, with objects all (deterministic, sequential,
Moore) automata. Objects are sextuples (𝑄, Σ, 𝑌 , 𝛿, 𝑞0, 𝑦), where𝑄 is the
set of states, Σ and 𝑌 are the sets of input symbols and output symbols,
respectively, 𝛿 : Σ × 𝑄 → 𝑄 is the transition map, 𝑞0 ∈ 𝑄 is the
initial state, and 𝑦 : 𝑄 → 𝑌 is the output map. Morphisms from an
automaton (𝑄, Σ, 𝑌 , 𝛿, 𝑞0, 𝑦) to an automaton (𝑄′, Σ′, 𝑌 ′, 𝛿′, 𝑞′0, 𝑦

′) are
triples ( 𝑓𝑄, 𝑓Σ, 𝑓𝑌 ) of functions 𝑓𝑄 : 𝑄 → 𝑄′, 𝑓Σ : Σ → Σ′, and 𝑓𝑌 :
𝑌 → 𝑌 ′ satisfying the following conditions:
• preservation of transition: 𝛿′( 𝑓Σ (𝜎), 𝑓𝑄 (𝑞)) = 𝑓𝑄 (𝛿(𝜎, 𝑞)),
• preservation of outputs: 𝑓𝑌 (𝑦(𝑞)) = 𝑦′( 𝑓𝑄 (𝑞)),
• preservation of initial state: 𝑓𝑄 (𝑞0) = 𝑞′0.

ce11) turn these ideas into precise statements: (1) every poset (𝑃, ≤) gives rise
to a category 𝑐[𝑃] with objects the elements of 𝑃, and where there is a
unique morphism 𝑥 → 𝑦 if and only if 𝑥 ≤ 𝑦 in 𝑃; (2) every monoid
𝑀 gives rise to a category B𝑀 having a single object •, and where
B𝑀 (•, •) = 𝑀 .

ce12) Define the category Vec𝐾 where the set of objects is the set of natural
numbers {0, 1, . . . , } and the set of morphisms 𝑛→ 𝑚 is the set of 𝑚 × 𝑛
matrices with entries in the field 𝐾 . In what sense this category ‘does not
lose information’ contained in the (large) category of vector spaces?

ce13) Let Fld be the category of fields; starting from it we can define a category
Vec (note the absence of subscript) containing literally all vector spaces in
the following way: an object of Vec is a pair (𝐾,𝑉), where 𝐾 is a field and
𝑉 a vector space on 𝐾 . A morphism (𝐾,𝑉) → (𝐿,𝑊) is a pair 𝑢 : 𝐾 → 𝐿

and 𝑓 : 𝑉 → 𝑊 such that 𝑢 is a homomorphism of rings, and 𝑓 : 𝑉 → 𝑊

a function such that 𝑓 (𝑣 + 𝑣′) = 𝑓 𝑣 + 𝑓 𝑣′ and 𝑓 (𝑎𝑣) = 𝑢(𝑎) 𝑓 (𝑣) for every
𝑎 ∈ 𝐾, 𝑣 ∈ 𝑉 . Define identities and compositions ‘in the obvious way’
and prove that the resulting structure is indeed a category.

ce14) Define a category C with a single object •, and where the set of morphisms
• → • is specified in BNF as

𝑡 ::= 𝑥0 | 𝑐 | 𝑓 𝑡 | 𝑔 𝑡 (5.5)

where 𝑥0 is one given variable, 𝑐 is a constant and 𝑓 , 𝑔 are two different
given function symbols. Composition is defined as substitution 𝑡 [𝑡′/𝑥0]
(where 𝑡′ replaces 𝑥0 in 𝑡 is defined recursively).

If you know what to do with it, you are allowed to use a proof-assistant
that checks the axioms of category.3

3If you are very brave: a monoid is exactly a category with a single object; this means that C above
is isomorphic to a certain monoid 𝑀 , whose elements are the terms 𝑡 = 𝑥0 | 𝑐 | 𝑓 𝑡 | 𝑔 𝑡 and whose
monoid operation is defined by substitution. Describe the monoid 𝑀 .
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ce15) From the category of sets, remove all functions 𝐴 → 𝐵 when 𝐴 ≠ 𝐵 are
different sets; is the result still a category C?

ce16) Recall that an homotopy between two continuous functions 𝑓 , 𝑔 : 𝑋 ⇒ 𝑌

consists of a continuous function 𝐻 : 𝑋 × [0, 1] → 𝑌 with the property
that for each 𝑥 ∈ 𝑋 , 𝐻 (𝑥, 0) = 𝑓 (𝑥) and 𝐻 (𝑥, 1) = 𝑔(𝑥).
• Show that ‘being homotopic’ is an equivalence relation on the set of

continuous functions Top(𝑋,𝑌 ) (showing transitivity of the relation
is, in particular, a delicate point); we denote the relation ‘being
homotopic’ as ≃𝑋,𝑌 or simply as ≃.
• Given continuous maps 𝑓 , 𝑔 ∈ Top(𝑋,𝑌 ) and ℎ ∈ Top(𝐴, 𝑋), show

that if 𝑓 ≃𝑋,𝑌 𝑔 then 𝑓 ◦ ℎ ≃𝐴,𝑌 𝑔 ◦ ℎ; similarly, if 𝑘 ∈ Top(𝑌, 𝐵)
and 𝑓 ≃𝑋,𝑌 𝑔, then 𝑘 ◦ 𝑓 ≃𝑋,𝐵 𝑘 ◦ 𝑔.

Exercise cf.2□ Let C be a category. Show that ‘being isomorphic’ is an
equivalence relation on the set of objects of a category.

Exercise cf.3□ Let C be a category. Show that ‘there exists a morphism
between’ is an order relation on the set of objects of a category (usually, not
antisymmetric).

Exercise cf.4□ Let C be a category. Study the properties of the relation ‘being
parallel’ on the set of morphisms of C.

Exercise cf.5□ Deduce from the previous exercise that there is a poset C𝑝
associated to every category C; the poset C𝑝 is called the posetal reflection of
C. Show that every functor C → 𝑃, where (𝑃, ≤) is a poset, defines a unique
monotone function C𝑝 → 𝑃.

Exercise cf.6□ Let 𝐴 be a set; show that there exist
• the ‘minimal’ category 𝐴𝛿 on 𝐴, where the objects are the elements of 𝐴,

and only identity morphisms exist;
• the ‘maximal’ category 𝐴𝜒 on 𝐴, where the objects are the elements of
𝐴, and there exists exactly one morphism between any two objects.

Show that any two objects of 𝐴𝜒 are isomorphic.4

Exercise cf.7□ Detail the construction that gives the ‘minimal’ and ‘maximal’
category on a set 𝐴 (i.e., ‘regard a set 𝐴 as a discrete category’, and ‘regard a set 𝐴
as a caegory with exactly one morphism between any two elements’).

Exercise cf.8□ Among many others, a procedure to build a category is to ‘force
a bunch of monoids to live together’: take a family of monoids 𝑀𝑖 indexed by a set
𝐼, and define a category

⊎
𝑀𝑖 having objects the elements 𝑖 ∈ 𝐼 and morphisms

specified by

hom(𝑖, 𝑗) =
{
𝑀𝑖 𝑖 = 𝑗

∅ 𝑖 ≠ 𝑗
(5.6)

Prove that this is indeed a category.
4The notation 𝐴𝜒 stands for the chaotic (Gr. 𝜒�́�𝑜𝜍, a primordial state of Being where there is no
distinction between elements) category on 𝐴.
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Exercise cf.9□ Recall that a (directed) graph G consists of a pair of sets
𝐺0, 𝐺1 equipped with functions

𝑠, 𝑡 : 𝐺1 → 𝐺0 (5.7)

sending each edge (element of 𝐺1) to a pair of vertices (elements of 𝐺0); a directed
graph G gives rise to a free category, obtained as follows:

• the set of objects of 𝐹G is the set of vertices 𝐺0 of G;
• the set of morphisms 𝑣 → 𝑤 between two vertices 𝑣, 𝑤 ∈ 𝐺0 is the set of

all tuples

(𝑣, ®𝑥, 𝑤) = 𝑣 → 𝑥1 → 𝑥2 → · · · → 𝑥𝑛 → 𝑤 (5.8)

with the convention that if 𝑣 = 𝑤 and 𝑛 = 0 the tuple is empty and equal
to an element ()𝑣 ∈ 𝐹G(𝑣, 𝑣).

The composition operation in 𝐹G is defined as

(𝑢, ®𝑦, 𝑤) ◦ (𝑣, ®𝑥, 𝑢) = (𝑣, ®𝑥 ⊎𝑢 ®𝑦, 𝑤) (5.9)

where ®𝑥 ⊎𝑢 ®𝑦 = 𝑥1 → · · · → 𝑥𝑛 → 𝑢 → 𝑦1 → · · · → 𝑦𝑚 if ®𝑥 = (𝑥1 →
· · · → 𝑥𝑛) and ®𝑦 = (𝑦1 → · · · → 𝑦𝑚). Show that this is in fact a category
(for each 𝑣 ∈ 𝐺0, the element ()𝑣 is the identity arrow in 𝐹G for the
composition defined above; composition is associative; etc).

Exercise cf.10□ Define a verbose category to be a tuple A = (O,M, d, c, ◦)
consisting of

• a class O, called the class of A-objects,
• a classM, called the class of A-morphisms,
• functions d : M → O and c : M → O, assigning to each morphism its

domain and codomain, and
• a function ◦ from 𝐷 = {( 𝑓 , 𝑔) | 𝑓 , 𝑔 ∈ M and d( 𝑓 ) = c(𝑔)} toM[ with
◦( 𝑓 , 𝑔) written 𝑓 ◦ 𝑔],

subject to the following conditions:

• If ( 𝑓 , 𝑔) ∈ 𝐷, then dom( 𝑓 ◦ 𝑔) = dom(𝑔) and cod( 𝑓 ◦ 𝑔) = cod( 𝑓 ).
• If ( 𝑓 , 𝑔) and (ℎ, 𝑓 ) belong to 𝐷, then ℎ ◦ ( 𝑓 ◦ 𝑔) = (ℎ ◦ 𝑓 ) ◦ 𝑔.
• For each 𝐴 ∈ O there exists a morphism 𝑒 such that dom(𝑒) = 𝐴 = cod(𝑒)

and
– 𝑓 ◦ 𝑒 = 𝑓 whenever ( 𝑓 , 𝑒) ∈ 𝐷, and
– 𝑒 ◦ 𝑔 = 𝑔 whenever (𝑒, 𝑔) ∈ 𝐷.

• For any (𝐴, 𝐵) ∈ O × O, the class { 𝑓 ∈ M | dom( 𝑓 ) = 𝐴, cod( 𝑓 ) = 𝐵}
is a set.

Compare the definition of verbose category with that of category and determine in
which sense these definitions can be considered ‘equivalent’.
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Exercise cf.11□ Consider the category C/𝐴 of arrows with a common codo-
main 𝐴, and where morphisms are given by commutative triangles

𝑋

ℎ ��

𝑓 // 𝑌

𝑘��
𝐴

(5.10)

(more formally, C/𝐴 has as objects all the arrows ℎ : 𝑋 → 𝐴, and C/𝐴(ℎ, 𝑘)
for ℎ : 𝑋 → 𝐴 and 𝑘 : 𝑌 → 𝐴 consists of the subset of C(𝑋,𝑌 ) made of those
𝑓 : 𝑋 → 𝑌 such that 𝑘 𝑓 = ℎ.)

Does C/𝐴 has an initial object? Does it have a terminal object? Try to write
down the definition of product of two objects ℎ, 𝑘 in C/𝐴; try to write down the
definition of coproduct of two object ℎ, 𝑘 in C/𝐴. A product of ℎ, 𝑘 in C/𝐴 is
called the pullback of fibered product of ℎ, 𝑘 in C.

Exercise cf.12□ Describe as precisely as possible the category C/𝐴 for every
example of category in cf.1.

Exercise cf.13□ Let C be a category; define the arrow category C→ having
• objects all the morphisms 𝑢 : 𝑋 → 𝑌 of C;
• morphisms

[
𝑋
𝑢↓
𝑌

]
→

[
𝐴
𝑣 ↓
𝐵

]
the commutative squares

𝑋
𝑓 //

𝑢

��

𝐴

𝑣

��
𝑌

𝑔
// 𝐵

(5.11)

Define identities and composition in the obvious way.
Does C→ have an initial object? Does it have a terminal object? Write down

the definition of product and of coprodcut in C→.
In what sense, if any, (Cop)→ is equivalent to (C→)op?

Exercise cf.14□ Verify whether the following are examples of functors: for
those where only the correspondence on objects is given, try to define the one on
morphisms or show that there is none making them a functor.

ef1) the empty functor 𝐹! : ∅ → C, where ∅ is the empty category, and C is
any other category; show that there is only one such functor.

ef2) the identity functor 1 : C → C of a given category C, acting as the identity
function both on objects and on morphisms.

ef3) the constant functor 𝑐𝑋 : A → C, sending all objects 𝐴 ∈ A𝑜 to 𝑋 ∈ C𝑜,
and all morphisms 𝐴→ 𝐴′ to the identity morphism of 𝑋 .

ef4) the functor 𝑑𝑋 : • → C from the singleton category, ‘choosing the object
𝑋’ and its identity. (Explain what this means formally.)

ef5) Given a category C and a morphism 𝑓 ∈ C(𝐶0, 𝐶1), the functor 𝑚 𝑓 :
{0→ 1} → C from the category with two objects and a single nonidentity
arrow, sending 0 to 𝐶0, 1 to 𝐶1, and 0→ 1 to 𝑓 : 𝐶0 → 𝐶1.
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ef6) Given any category C and object 𝐴 ∈ C𝑜, the functor C(𝐴,−) : C → Set
sending 𝑋 ∈ C𝑜 to the set of morphisms 𝑢 : 𝐴→ 𝑋 , and each morphism
𝑔 : 𝑋 → 𝑌 to the function C(𝐴, 𝑋) → C(𝐴,𝑌 ) sending 𝑢 : 𝐴 → 𝑋 to
𝑔 ◦ 𝑢 : 𝐴→ 𝑌 . The functor C(𝐴,−) is called corepresentable. The objec
𝐴 is called the representing object or the representative of the functor.

ef7) Given any category C and object 𝐴 ∈ C𝑜, the functor C(−, 𝐴) : Cop →
Set sending 𝑋 ∈ C𝑜 to the set of morphisms 𝑢 : 𝑋 → 𝐴, and each
morphism 𝑔 : 𝑋 → 𝑌 to the function C(𝑌, 𝐴) → C(𝑋, 𝐴) sending
𝑢 : 𝑌 → 𝐴 to 𝑢◦𝑔 : 𝑋 → 𝐴. The functor C(−, 𝐴) is called representable.
The objec 𝐴 is called the representing object or the representative of the
functor.5

ef8) Define a functor Set → Mon sending a set 𝐴 to the set 𝐴★ of all finite
lists with entries in 𝐴; how does a function 𝑓 : 𝐴→ 𝐵 induces a monoid
homomorphism 𝐴∗ → 𝐵∗?

ef9) Let 𝐺 be a graph; send 𝐺 to the set of its connected components, i.e.
the set𝐺0 of its vertices modulo the equivalence relation generated by the
source and target function 𝐺1 → 𝐺0 × 𝐺0: 𝑎, 𝑏 ∈ 𝐺0 are equivalent if
there is an edge 𝑎 → 𝑏 in 𝐺. Show that this is a functor Graph→ Set.

ef10) Try to define a functor Grp → Ab sending a group to its abelianization,
i.e. the quotient of 𝐺 by its commutator subgroup

[𝐺,𝐺] := {𝑎𝑏𝑎−1𝑏−1 | 𝑎, 𝑏 ∈ 𝐺} (5.12)

ef11) Try to define a functor Grp→ Ab sending a group to its center.6
ef12) Try to define a functor sending a ring to its group of invertible elements.
ef13) There is a functor Ring → Grp sending a ring 𝑅 to the group of 𝑛 ×

𝑛 invertible matrices with entries in 𝑅. Define its correspondence on
morphism and shot that it is a functor.

ef14) Send a ring 𝑅 to the set of all its primes ideals. Is this a functor Ring→
Set? Covariant or contravariant?

ef15) Send a topological space to the set of its clopen (=both open and closed)
subsets; is this a functor? Covariant or contravariant?

ef16) Send a group 𝐺 to its group algebra Z[𝐺], the set of formal sums of
integers indexed by elements of 𝐺,

∑
𝑔∈𝐺 𝑛𝑔; define a ring operation on

Z[𝐺] and show that this is the object part of a functor Grp → Ring.
Recall that a few items ago you defined a functor sending a ring 𝑅 to
its group of invertible elements 𝑅×; construct a bĳection between the set
of group homomorphisms 𝐺 → 𝑅× and the set of ring homomorphisms
Z[𝐺] → 𝑅.

ef17) Send a set 𝑋 to the set of polynomials with integer coefficients Z[𝑥 | 𝑥 ∈
𝑋]; does this define the object part of a functor Set→ Ring?

5More generally, and in concordance with the principle of equivalence, a functor 𝐹 : C → Set is
called corepresentable if there exists an object 𝐴 ∈ C and a natural isomorphism C(𝐴,−) � 𝐹;
similarly, 𝐹 : CopSet is representable if there is a natural isomorphism C(−, 𝐴) � 𝐹 for some 𝐴 ∈ C.
6The center of a group 𝐺 is the set {𝑔 ∈ 𝐺 | ∀𝑥 ∈ 𝐺, 𝑔𝑥 = 𝑥𝑔}.
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ef18) Send a ring 𝑅 to the ring 𝑅[𝑡] of polynomials in a single indeterminate 𝑡;
does this define the object part of a functor Ring→ Ring?

ef19) Send a group to the poset of all its subgroups; is this the object part of a
functor Grp→ Pos?

ef20) Let 𝑀 be a monoid regarded as a category with a single object. What is
a functor 𝑀 → Set? What is a functor 𝑀op → Set?

ef21) Let (𝑃, ≤) be a poset regarded as a category. What is a functor (𝑃, ≤
)op → Set?

ef22) In the notation above, let 𝑃 be the poset of open subsets of the real
line R (with respect to the usual ‘Euclidean’ topology). Consider the
correspondence

𝑈
� // 𝐶0(𝑈) (5.13)

sending an open subset 𝑈 ⊆ R to the set of all continuous functions
𝑓 : 𝑈 → R. Show that this defines a functor 𝑃op → Set, and in
particular that every inclusion𝑈 ⊆ 𝑉 of open sets gives rise to a restriction
operation 𝐶0𝑉 → 𝐶0𝑈 sending a function 𝑓 : 𝑉 → R to its ‘restriction’
𝑓 |𝑈 : 𝑈 → R. Show that the following two properties are satisfied, given
any𝑈 ∈ 𝑃 and any covering {𝑉𝑖 | 𝑖 ∈ 𝐼} of𝑈:7
• if 𝑓 , 𝑔 ∈ 𝐶0(𝑈) are such that 𝑓 |𝑖 = 𝑔 |𝑖 for al 𝑖 ∈ 𝐼, then 𝑓 = 𝑔

( 𝑓 |𝑖 = 𝑓 |𝑉𝑖 for short).
• if 𝑓𝑖 ∈ 𝐶0(𝑉𝑖) is a family of functions such that 𝑓𝑖 |𝑉𝑖∩𝑉𝑗

= 𝑓 𝑗 |𝑉𝑖∩𝑉𝑗

for every 𝑖, 𝑗 ∈ 𝐼, then there exists a function 𝑓 ∈ 𝐶0(𝑈) such that
𝑓 |𝑖 = 𝑓𝑖 for every 𝑖 ∈ 𝐼.

Exercise cf.15□ Let C be a category. We say that C is concrete is there exists
a faithful functor𝑈 : C → Set from C to the category of sets and functions. Show
that

• the categories of sets and functions, sets and relations, all categories of
algebraic structures in the sense of ce3, the category of posets, the category
of categories, the category of topological spaces and the categories of ce8,
ce9, ce10, ce14 are all concrete;
• a category C is concrete if and only if its opposite category Cop is concrete;
• if a category C is concrete, all the slice categories C/𝑋 are concrete; is the

converse true? (I.e.: if all slice categories are concrete, is C concrete?)
More generally, if 𝐹, 𝐺 are functors A 𝐹−→ C 𝐺←− B, and A,B are
concrete, the comma category 𝐹/𝐺 is concrete;
• if C is concrete and J is a small category, the category of functors
𝐹 : J → C and natural transformations 𝛼 : 𝐹 ⇒ 𝐹′ is concrete;

The variety of cases in which a category is concrete begs the question: is there
a non-concrete category?

7A covering of𝑈 ∈ 𝑃 is a family {𝑉𝑖 | 𝑖 ∈ 𝐼} of elements of 𝑃 such that
⋃
𝑉𝑖 = 𝑈.
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Exercise cf.16□ Let C be a category, 𝑋 ∈ C an object, and consider a mor-
phism 𝑓 ∈ C/𝑋; let 𝐶 ( 𝑓 , 𝐵) be the set of morphisms 𝑢, 𝑣 : 𝑋 → 𝐵 such that
𝑢 ◦ 𝑓 = 𝑣 ◦ 𝑓 , and define an equivalence relation on objects of C/𝑋 as follows:

𝑓 ≍ 𝑔 iff 𝐶 ( 𝑓 , 𝐵) = 𝐶 (𝑔, 𝐵) for every 𝐵 ∈ C,

The Isbell criterion characterizes concreteness in terms of the smallness of the
quotient of C/𝑋 under the equivalence relation ≍:

If C is concrete, then for every object 𝑋 ∈ C the quotient of the
class (C/𝑋)𝑜 under the equivalence relation ≍ is a set.

Exercise cf.17□ Define a correspondence 𝐺 : C → Mon (the category of
monoids), sending a set 𝐴 to the monoid 𝐴★ of finite lists of elements of 𝐴, i.e. to
the set of all finite lists (𝑎1, . . . , 𝑎𝑛) where 𝑛 ≥ 0 and 𝑎𝑖 ∈ 𝐴 for each 𝑖 = 1, . . . , 𝑛,
and a function 𝑓 : 𝐴→ 𝐴 to the function

𝐴★→ 𝐴★ : (𝑎1, . . . , 𝑎𝑛) ↦→ ( 𝑓 ( 𝑓 𝑎1), . . . , 𝑓 ( 𝑓 𝑎𝑛)) (5.14)

Is 𝐺 a functor C → Mon?

Exercise cf.18□ Given two functors 𝐹 : C → X and 𝐺 : D → X define the
comma category (𝐹/𝐺) having

• objects the triples (𝐶, 𝐷, ℎ) where ℎ : 𝐹𝐶 → 𝐺𝐷 is a morphism in X;
• morphisms (𝐶, 𝐷, ℎ) → (𝐶′, 𝐷′, 𝑘) the pairs 𝑢 : 𝐶 → 𝐶′, 𝑘 : 𝐷 → 𝐷′

such that the square

𝐹𝐶
𝐹𝑢 //

ℎ
��

𝐹𝐶′

𝑘
��

𝐺𝐷
𝐺𝑣

// 𝐺𝐷′

(5.15)

is commutative.
Verify that it is a category; does (𝐹/𝐺) have an initial object? Does it have a terminal
object? Fix an object 𝑋 of the codomain of a given functor 𝐹 : C → D; then,
define the category (𝐹/𝑋) as the comma between 𝐹 and the functor 𝑑𝑋 : • → D
‘selecting’ 𝑋 .

Exercise cf.19□ Describe as precisely as possible the comma category (𝐹/𝑋)
for each functor in cf.14.

Exercise cf.20□ A simple polynomial is a functor 𝐹 : Set → Set that is
defined from the following inductive rules:

sp1) the identity functor 𝑋 ↦→ 𝑋 is a simple polynomial;
sp2) every constant functor 𝑋 ↦→ 𝐴 is a simple polynomial;
sp3) the product 𝐹 ×𝐺 : 𝑋 ↦→ 𝐹𝑋 ×𝐺𝑋 of two simple polynomials is simple;
sp4) the coproduct

∐
𝑖∈𝐼 𝐹𝑖 : 𝑋 ↦→∐

𝑖∈𝐼 𝐹𝑖𝑋 of an arbitrary number of simple
polynomials is simple.

An example of a polynomial functor is 𝑋 ↦→ 𝐴 × 𝑋3 + 𝐵 × 𝑋2 + 𝑋 + 1, where ×
denotes cartesian product, and + denotes coproduct; another example is a ‘formal
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series functor’ 𝑋 ↦→ ∐
𝑖∈𝐼 𝐴𝑖 × 𝑋𝑛𝑖 where 𝑛𝑖 are natural numbers and (𝐴𝑖 | 𝑖 ∈ 𝐼)

is an arbitrary family of sets.
An arity function consists of a set 𝐼 equipped with a function 𝑎 : 𝐼 → N; the

inverse image 𝑎−1𝑛 is the set of elements in 𝐼 having ‘arity’ 𝑛.8 Every arity function
𝑎 : 𝐼 → N defines an arity functor as

𝐹𝑎 : 𝑋 ↦→
∐
𝑖∈𝐼

𝑋𝑎 (𝑖) = {(𝑖, 𝑥) | 𝑖 ∈ 𝐼, 𝑥 ∈ 𝑋𝑎 (𝑖) } (5.16)

Show that the class of simple polynomials coincides with the class of arity functors
(𝐹𝑎 is ‘clearly’ a simple polynomial: how does one define an arity associated to a
given simple polynomial?)

Exercise cf.21□ Let 𝑷 : Set→ Set be the correspondence that sends a set 𝐴
to the power set 𝑷𝐴 of 𝐴, the set of all subsets 𝑈 ⊆ 𝐴, and a function 𝑓 : 𝐴 → 𝐵

to the function 𝑃 𝑓 : 𝑷𝐴→ 𝑷𝐵, that sends a subset𝑈 ⊆ 𝐴 to the image

𝑓∗𝑈 := { 𝑓 𝑢 | 𝑢 ∈ 𝑈} (5.17)

Similarly, let 𝑷: Set → Set be the correspondence that sends 𝐴 to 𝑷𝐴, but a
function 𝑓 : 𝐴 → 𝐵 to the function 𝑷𝐵 → 𝑷𝐴, that sends a subset 𝑉 ⊆ 𝐵 to the
inverse image

𝑓 ∗𝑉 := {𝑎 ∈ 𝐴 | 𝑓 𝑎 ∈ 𝑉} (5.18)
• Show that both 𝑷,

𝑷are functors ( 𝑷is contravariant, i.e. 𝑷( 𝑓 ◦ 𝑔) =
𝑷

𝑔 ◦ 𝑷
𝑓 ); show that given subsets𝑈 ∈ 𝑷𝐴,𝑉 ∈ 𝑷𝐵 one has

𝑓∗𝑈 ⊆ 𝑉 ⇐⇒ 𝑈 ⊆ 𝑓 ∗𝑉. (5.19)

• What is a natural transformation 𝑓 ∗ 𝑓∗ ⇒ 1𝑷𝐴, regarding 𝑷𝐴 as a cate-
gory? Show that for each 𝑈 ∈ 𝑷𝐴, one has 𝑈 ⊆ 𝑓 ∗ 𝑓∗𝑈: is this a natural
transformation 𝑓 ∗ 𝑓∗ ⇒ 1𝑷𝐴?

Exercise cf.22□ Verify that the following are examples of natural transforma-
tions:

• The family of set functions

𝜂𝐴 : 𝐴 // 𝐴 + 𝐸 (5.20)

where 𝐸 is a fixed set, defined as the embedding of 𝐴 as first summand
in the disjoint union 𝐴 + 𝐸 (if 𝐴 + 𝐸 is built as it is customary as (𝐴 ×
{0}) ∪ (𝐸 × {1}), then 𝜂𝐴(𝑎) = (𝑎, 0); in more type-theoretic notation,
𝜂𝐴 is just the map in1).
• The family of set functions ∇ : 𝐸 + 𝐸 → 𝐸 defined sending (𝑒, 0) ↦→ 𝑒

and (𝑒, 1) ↦→ 𝑒.
• The family of maps

𝜇𝐴 : (𝐴 + 𝐸) + 𝐸 // 𝐴 + 𝐸 (5.21)

8The word ‘arity’ is a back-formation from the Latin adjectival numeral suffix -arius, used to form
adjectives from nouns or numerals.
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defined as

unpack 𝑥 as [𝑥 in 𝐴 + 𝐸, in2 𝑥 in 𝐸]

or, in less type-theoretic notation, as the composition

(𝐴 + 𝐸) + 𝐸 ∼ // 𝐴 + (𝐸 + 𝐸) 𝐴+∇ // 𝐴 + 𝐸 (5.22)

• Given a morphism 𝑓 : 𝑋 → 𝑌 of a category C, show that there exists a
natural transformation

C(𝑌,−) // C(𝑋,−) (5.23)

between representable functors (cf. cf.14.ef6); similarly, there exists a
natural transformation

C(−, 𝑋) // C(−, 𝑌 ) (5.24)

• The family of functions 𝑠𝑋 : 𝑋 → 𝑷𝑋 (where 𝑷𝑋 is the powerset of 𝑋 ,
cf. cf.21) defined sending an element 𝑥 ∈ 𝑋 to the singleton {𝑥}, and
the family of functions 𝜇𝑋 : 𝑷𝑷𝑋 → 𝑷𝑋 defined as follows: if a typical
element of 𝑷𝑷𝑋 is a family of subsets of 𝑋 , then 𝜇𝑋 ({𝐴𝑖}) =

⋃
𝑖 𝐴𝑖 .

• Let 𝐺 be a group, and 𝐺ab its abelianization 𝐺ab, cf. cf.14.ef10. There
is a natural projection map 𝐺 → 𝐺ab sending an element of 𝐺 into the
coset 𝑥 [𝐺,𝐺].
• Let again 𝑷𝑋 denote the powerset of 𝑋 and let 2𝑋 be the set of functions
𝑋 → {0, 1}. Since Equation 1.3 we know that there exists a bĳection
𝜎 : 𝑷𝑋 → 2𝑋 sending each subset 𝑈 ⊆ 𝑋 to its indicator function 𝜒𝑈 ,
with inverse the map sending 𝛾 : 𝑋 → 2 to the subset 𝑈 = 𝛾←1. Show
that 𝜎𝑋 : 𝑷𝑋 → 2𝑋 is the component at 𝑋 of a natural transformation,
which is componentwise invertible; as a consequence, 𝑋 ↦→ 𝑷𝑋 and
𝑋 ↦→ 2𝑋 are isomorphic functors.
• Let 𝐾 be a field, 𝑛 ≥ 1 a fixed natural number, and define a pair of functors

GL𝑛 and 𝑀𝑛 as follows:
– GL𝑛 : CRing → Grp, sending a (commutative) ring 𝑅 to the group

of 𝑛 × 𝑛 invertible matrices with entries in 𝑅;
– 𝑀𝑛 : CRing→ Ring, sending a (commutative) ring 𝑅 to the ring of
𝑛 × 𝑛 matrices with entries in 𝑅.

Then, let (−)∗ : CRing→ Grp the functor sending a (commutative) ring
𝑅 to the group 𝑅∗ of its invertible elements.

Is the determinant function det : 𝑀𝑛 (𝑅) → 𝑅 the component at 𝑅 of
a natural transformation 𝑀𝑛 → 𝐽 (where 𝐽 is the tautological inclusion
functor CRing→ Ring)? What if instead we take det : GL𝑛 (𝑅) → 𝑅∗?

Is there a natural transformation GL𝑛 → 𝑀𝑛 whose components are
the obvious inclusions of the invertible matrices in all matrices?

Show that the functors GL𝑛, 𝑀𝑛 are representable, i.e. that there exist suitable rings
𝑀,𝐺 with the property that GL𝑛 (𝑅) � CRing(𝐺, 𝑅) and 𝑀𝑛 (𝑅) � CRing(𝑀, 𝑅)
(natural isomorphisms of functors).
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Exercise cf.23□ Natural transformations are very common, but destroying the
naturality of a transformation is very easy: find a natural transformation between
two functors 𝐹, 𝐺 : C → D, change the value of one of its components, and prove
that the result is not natural any more.

Yoneda and representability: expand and complete

Exercise cf.24□ Prove that the following functors are examples of co/repre-
sentable (cf. cf.14.ef6 and ef7)

• The identity functor Set → Set is represented by the singleton set {∗};
if you’re upset about Set not being a small category, prove the analogous
result for the tautlogical embedding Fin→ Set from the category of finite
sets and functions to the category of all sets and functions. Do not forget
to prove that the bĳection 𝑋 � Set(∗, 𝑋) you find is natural in 𝑋!
• The functor𝑈 : Cat→ Set that sends a category C to its set of objects is

represented by the terminal category {∗}; do not forget to prove that the
bĳection𝑈C � Cat(∗, C) you find is natural!
• The functor 𝑉 : Cat→ Set that sends a category C to its set of arrows is

represented by the category {0 → 1} with two objects and a single non
identity morphism between them; do not forget to prove that the bĳection
𝑉C � Cat({0 ≤ 1}, C) you find is natural!
• Slightly more generally, the functor 𝐷𝑛 : Cat→ Set sending C to the set

{𝐴0
𝑓1−→ 𝐴1

𝑓2−→ . . .
𝑓𝑛−−→ 𝐴𝑛} (5.25)

of all 𝑛-tuples of composable morphisms in C is representable: who is
the representing object?
• Can you find two distinct natural transformations 𝛼0, 𝛼1 : 𝑈 ⇒ 𝑉? Can

you find two distinct natural transformations 𝛼0, 𝛼1 : 𝑉 ⇒ 𝑈? Can
you find two distinct natural transformations 𝑉 ⇒ 𝑉? Can you find all
natural transformations 𝐷𝑛 ⇒ 𝑉? [Hint: how many functors are there
{0 ≤ 1 ≤ 2} → {0 ≤ 1} if we consider the ordered sets as categories?]
• Consider the category Top of topological spaces (cf. ??) and continuous

functions and define a functor O : Topop → Set sending a topological
space (𝑋, 𝜏) to the set 𝜏 of its open subsets (regarded as a subset of
𝑃𝑋 = 2𝑋); show that O is representable by the space made from the set
𝑆 = {0, 1} equipped with the topology {∅, {1}, 𝑆}; this topology is called
the Sierpiński topology. [Hint: given a continuous map 𝑓 : (𝑋, 𝜏) →
(𝑆, 𝜎), such 𝑓 determines by an open subset 𝑓←1 and its complement
𝑓←0. Vice versa, for any open subset 𝑈 of 𝑋 the characteristic function
𝜒𝑈 : 𝑋 → 𝑆 is continuous if the codomain 𝑆 has the Sierpiński topology.
Do not forget to prove that the bĳection O𝑋 � Top(𝑋, 𝑆) is natural in 𝑋!]
• Let again Top be the category of topological spaces; define a disconnection

of a space 𝑋 as a pair of open subsets𝑈,𝑉 ⊆ 𝑋 such that𝑈 ∪𝑉 = 𝑋 and
𝑈 ∩𝑉 = ∅. In simple terms, a disconnection of 𝑋 is a way to prove that 𝑋
is disconnected. Prove that sending 𝑋 to the set of all its disconnections
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is a functor Topop → Set, represented by the space 𝐷 = {0, 1} equipped
with the discrete topology (=all subsets are open). [Hint: adapt the
previous line of reasoning!] Deduce the following disconnection criterion:
a topological space (𝑋, 𝜏) is connected if and only if the only continuous
functions 𝑓 : 𝑋 → 𝐷 are the constants 𝑓 𝑥 = 0 for all 𝑥 ∈ 𝑋 and 𝑓 𝑥 = 1
for all 𝑥 ∈ 𝑋 .
• Let C be the category of rings and homomorphisms of rings (sending

1 to 1); define a functor 𝑍 sending a ring 𝑅 to its underlying set of
elements; show that 𝑍 is representable, by the ring of polynomials Z[𝑡]
of polynomials in one indeterminate 𝑡. Don’t forget to prove naturality!

Exercise cf.25□ Let’s explore representability criteria.
• Prove that if 𝐹 : C → Set is corepresentable, then 𝐹 commutes with all

colimits that exist in C;
• Prove that 𝐹 : C → Set is corepresentable if and only if the category of

elements of 𝐹 (cf. ??) has an initial object (dualize: 𝐹 : Cop → Set is
representable if and only if E(𝐹) has a terminal object).

Exercise cf.26□ Define the category of elements of a functor 𝐹 : C → Set as
follows:

• The objects of E(𝐹) are the pairs (𝐶, 𝑥) where 𝐶 is an object of C and
𝑥 ∈ 𝐹𝐶 is an element;
• The morphisms (𝐶, 𝑥) → (𝐶′, 𝑦) consist of the morphisms 𝑓 : 𝐶 → 𝐶′

such that 𝐹 𝑓 (𝑥) = 𝑦.

Prove that E(𝐹) is indeed a category, if composition (𝐶, 𝑥)
𝑓
−→ (𝐶′, 𝑦)

𝑔
−→ (𝐶′′, 𝑧)

is defined as (𝐶, 𝑥)
𝑔 𝑓
−−→ (𝐶′′, 𝑧).

Prove that the category of elements of 𝐹 can be identified to the comma category
of the pair of functors

•

��
Cop // [C,Set] .

(5.26)

Prove that E(𝐹) has an initial object if and only if 𝐹 is representable, i.e. there
exists an object 𝑋 ∈ C together with a natural isomorphism 𝐹 � C(𝑋, ).



Tuesday 31st January, 2023—22:21



Tuesday 31st January, 2023—22:21

CHAPTER 6

Co/limits

Exercise cl.1□ Let C be a category and 𝐹 : I → C be a constant functor, say
𝐹𝐼 = 𝐶 for every 𝐼 ∈ I and 𝐹 𝑓 = 1𝐶 for every 𝑓 : 𝐼 → 𝐼 ′. Is it true that, when it
exists, the limit of 𝐹 is also 𝐶? If not, find a counterexample (easy) and a general
formula to express lim 𝐹 (harder). Dualise to the case of colimits.

Exercise cl.2□ Let the category Dyn be defined by having
• objects the triples (𝑋, 𝑓 , 𝑥0) where 𝑋 is a set, 𝑓 : 𝑋 → 𝑋 an endofunction,

and 𝑥0 ∈ 𝑋 an element;
• a morphism (𝑋, 𝑓 , 𝑥0) → (𝑌, 𝑔, 𝑦0) is a function 𝑢 : 𝑋 → 𝑌 with the

property that 𝑢(𝑥0) = 𝑦0 and that the square

𝑋
𝑓 //

𝑢

��

𝑋

𝑢

��
𝑌

𝑔
// 𝑌

(6.1)

is commutative.
Explain in what sense the initial object of this category is the set N of natural
numbers. Prove that N is a monoid using the universal property only, i.e. defining
by induction the operation + : N→ N→ N.

Exercise cl.3□ Define the following categories, show the category axioms,
and unwind the definition of what is a terminal object in each of them.

• Let 𝑆 be a set and {𝐴𝑠 | 𝑠 ∈ 𝑆} a collection of sets indexed by 𝑆. Define
the category Π(𝐴𝑠 | 𝑠 ∈ 𝑆) as follows: an object consists of a pair
(𝑍, 𝒇 = { 𝑓𝑠 | 𝑠 ∈ 𝑆}) where 𝑍 is a set and 𝒇 = { 𝑓𝑠 : 𝑍 → 𝐴𝑠} is a family
of functions indexed by 𝑆; a morphism (𝑍, 𝒇 ) → (𝑊, 𝒈) consists of a
function 𝑢 : 𝑍 → 𝑊 such that 𝑔𝑠 ◦ 𝑢 = 𝑓𝑠 for every 𝑠 ∈ 𝑆:

𝐴𝑠

𝑍

𝑓𝑠
>>

𝑢
// 𝑊

𝑔𝑠
``

(6.2)

Investigate in particular the edge cases: what if 𝑆 = ∅? What if 𝑆 is a
singleton? What if 𝑆 has two elements {𝑎, 𝑏}?
• Let 𝑆, 𝑋,𝑌 be sets and { 𝑓𝑠 : 𝑋 → 𝑌 } a collection of functions with

the same domain and codomain, indexed by 𝑆. Define the category
Γ( 𝑓𝑠 | 𝑠 ∈ 𝑆) as follows: an object consists of a pair (𝑍, 𝑢 : 𝑍 → 𝑋)

75



Tuesday 31st January, 2023—22:21

76 6. CO/LIMITS

with the property that 𝑓𝑠 ◦ 𝑢 = 𝑓𝑡 ◦ 𝑢 for every 𝑠, 𝑡 ∈ 𝑆; a morphism
(𝑍, 𝑢) → (𝑊, 𝑣) consists of a function ℎ : 𝑍 → 𝑊 with the property that
𝑣 ◦ ℎ = 𝑢:

𝑍
𝑢 //

ℎ   

𝑋

𝑓𝑠 ////

//
... 𝑌

𝑊

𝑣

OO (6.3)

Investigate in particular the edge cases: what if 𝑆 = ∅? What if 𝑆 is a
singleton? What if 𝑆 has two elements {𝑎, 𝑏}?
• Let 𝑆 be a set, and { 𝑓𝑠 : 𝑋𝑠 → 𝑌 } a family of functions with the same

codomain 𝑌 , indexed by 𝑆. Define the category Λ( 𝑓𝑠 | 𝑠 ∈ 𝑆) as follows:
an object consists of a pair (𝑍, {𝑢𝑠 : 𝑍 → 𝑋𝑠}) where 𝑍 is a set and
𝒖 = {𝑢𝑠 : 𝑍 → 𝑋𝑠} is a family of functions indexed by 𝑆, with the
property that the composition 𝑓𝑠 ◦ 𝑢𝑠 : 𝑍 → 𝑋𝑠 → 𝑌 is independent
from the index 𝑠 ∈ 𝑆; a morphism (𝑍, 𝒖) → (𝑊, 𝒗) consists of a function
𝑡 : 𝑍 → 𝑊 such that 𝑣𝑠 ◦ 𝑡 = 𝑢𝑠:

𝑊
𝑣𝑠 //

𝑣𝑠′

��

𝑋𝑠

𝑓𝑠

��
𝑋𝑠′

𝑓𝑠′
// 𝑌
))

�� ... (6.4)

Exercise cl.4□ Fix a set 𝐴. Consider the functor 𝑆𝐴 sending a set 𝑋 to the set
1 + (𝐴 × 𝑋), whose elements are of two kinds: either the single element ⊥ ∈ 1, or
an element (𝑎, 𝑥) ∈ 𝐴 × 𝑋 .

An 𝑆𝐴-algebra consists of a pair (𝑋, 𝜎) where 𝑋 is a set and 𝜎 : 𝑆𝐴𝑋 → 𝑋

is a function. A morphism of 𝑆𝐴-algebras (𝑋, 𝜎) → (𝑌, 𝜏) consists of a function
𝑢 : 𝑋 → 𝑌 such that the square

1 + (𝐴 × 𝑋)

1+𝐴×𝑢
��

𝜎 // 𝑋

𝑢

��
1 + (𝐴 × 𝑌 )

𝜏
// 𝑌

(6.5)

is commutative. Show that this defines a category Alg(𝑆𝐴).
Describe the initial object 𝐴∗ of Alg(𝑆𝐴).

Exercise cl.5□ Consider again the functor 𝑆𝐴 defined above; an 𝑆𝐴-coalgebra
consists of a pair (𝑈, 𝑟) where 𝑈 is a set and 𝑟 : 𝑈 → 𝑆𝐴𝑈 is a function. A
morphism of 𝑆𝐴-coalgebras (𝑈, 𝑟) → (𝑉, 𝑡) consists of a function ℎ : 𝑈 → 𝑉 such
that the square

𝑈

ℎ

��

𝑟 // 𝑆𝐴𝑈

𝑆𝐴ℎ

��
𝑉

𝑡
// 𝑆𝐴𝑉

(6.6)

is commutative.
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• Show that this defines a category coAlg(𝑆𝐴);
• describe the terminal object �̂� of coAlg(𝑆𝐴);
• is there a relation between 𝐴∗ and �̂�? (For example, can one be identified

with a subset of the other?)

Exercise cl.6□ Let Ab be the category of abelian groups; find explicit descrip-
tions for

• the product of two objects 𝐴, 𝐵; from this, derive an explicit description
for 𝐴1 × · · · × 𝐴𝑛 for every 𝑛 ≥ 2;
• the coproduct of two objects 𝐴, 𝐵; from this, derive an explicit description

for 𝐴1 + · · · + 𝐴𝑛 for every 𝑛 ≥ 2. In particular, prove that there is a natural
isomorphism

𝐴 × 𝐵 � 𝐴 + 𝐵 (6.7)
i.e. an isomorphism of functors _ × _ � _ + _; the construction 𝐴 × 𝐵 �
𝐴 + 𝐵, in this context, is denoted 𝐴 ⊕ 𝐵 and called the biproduct of 𝐴, 𝐵;

• the equalizer 𝐸 ( 𝑓 , 𝑔) of a pair of homomorphisms 𝑓 , 𝑔 : 𝐴 → 𝐵; in
particular, find an explicit description when 𝑔 = 0 is the zero map; the
equaliser of ( 𝑓 , 0) is called the kernel of 𝑓 ;
• the pullback 𝐴 ×𝐶 𝐵 of a pair of maps 𝐴

𝑓
−→ 𝐶

𝑔
←− 𝐵; in particular, find an

explicit description for the equalizer of the pair of maps

Z
_·𝑚 // Z Z

_·𝑛oo (6.8)

Exercise cl.7□ Prove that the pullback of 𝐴
𝑓
−→ 𝐶

𝑔
←− 𝐵 is canonically isomor-

phic to the equaliser of the pair of maps

𝐶

Δ
��

𝐴 ⊕ 𝐵
𝑓 ⊕𝑔
// 𝐶 ⊕ 𝐶

(6.9)

where Δ is the diagonal map 𝑥 ↦→ (𝑥, 𝑥).
Prove that the equaliser of 𝑓 , 𝑔 : 𝐴→ 𝐵 is canonically isomorphic to the kernel

of the map
[
𝑓
𝑔

]
: 𝐴 ⊕ 𝐴→ 𝐵 : 𝑎 ↦→ 𝑓 (𝑎) − 𝑔(𝑎).

Definition 6.1 (Semiadditive category). A category C admits a zero object if
it has an initial object ⊥, a terminal object ⊤, and the unique morphism ⊥ → ⊤ is
invertible.

A semiadditive category is a category C with a zero object, finite products
and finite coproducts, such that the canonical map

𝐴 + 𝐵 // 𝐴 × 𝐵 (6.10)

is the component at (𝐴, 𝐵) of a natural isomorphism of functors _ × _ � _ + _.
The category of abelian groups is semiadditive; more generally, the category

of 𝑅-modules over a ring 𝑅 is semiadditive (cf. la.51, la.52, la.53).
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Exercise cl.8□ Show that in a semiadditive category C, every set C(𝑋,𝑌 )
becomes a commutative monoid under the operation

𝑓 + 𝑔 : 𝑋
Δ // 𝑋 ⊕ 𝑋

𝑓 ⊕𝑔 // 𝑌 ⊕ 𝑌 ∇ // 𝑌 . (6.11)

Who is the identity element 0 : 𝑋 → 𝑌?

From here on, until cl.22 we will consider an explicit way to build pushouts in
the category of sets. Let 𝐴, 𝐵 be sets, and 𝑓 : 𝐴→ 𝐵 be a function between them.

Exercise cl.9□ Show that 𝑓 induces an equivalence relation≈ 𝑓 on 𝐴 as follows:

𝑎 ≈ 𝑓 𝑏 ⇐⇒ 𝑓 (𝑎) = 𝑓 (𝑏). (6.12)

Exercise cl.10□ Let 𝑓 , 𝑔 : 𝐴 → 𝐵 be two functions. Show that 𝑓 , 𝑔 induce a
relation on 𝐵 as follows:

𝑏 𝑅 𝑓 ,𝑔 𝑏
′ ⇐⇒ for some 𝑎 ∈ 𝐴, 𝑓 (𝑎) = 𝑏 and 𝑔(𝑎) = 𝑏′. (6.13)

Usually, 𝑅 𝑓 ,𝑔 is not an equivalence relation (why? Build a minimal counterex-
ample); we denote ≈ 𝑓 ,𝑔 the equivalence relation 𝑅 𝑓 ,𝑔 generated by 𝑅 𝑓 ,𝑔.

Exercise cl.11□ Consider a function 𝑓 : 𝐴→ 𝐵 and the equivalence relation
≈ 𝑓 ; let 𝑄 = 𝐴/≈ 𝑓 be the quotient set, i.e. the set of equivalence classes {[𝑎] | 𝑎 ∈
𝐴}, where [𝑎] := {𝑎′ ∈ 𝐴 | 𝑎 ≈ 𝑓 𝑎′}. Let 𝜋 𝑓 : 𝐴 → 𝑄 be the projection on the
quotient set.

Prove that there exists a unique and injective function 𝑓 : 𝑄 → 𝐵 such that the
diagram

𝐴
𝑓

��

𝜋 𝑓

��
𝑄

𝑓

// 𝐵

(6.14)

is commutative. [Hint: 𝑓 must be defined sending [𝑎] ∈ 𝑄 to 𝑓 (𝑎): prove that this
is a well-defined function.]

More in general,

Exercise cl.12□ Let 𝐴 be a set and 𝑅 an equivalence relation on 𝐴; write 𝑥 ≍ 𝑦
whenever (𝑥, 𝑦) ∈ 𝑅.

A function 𝑓 : 𝐴 → 𝑋 is said to be compatible with 𝑅 (or constant on the
equivalence classes of 𝑅) if

𝑥 ≈ 𝑦 ⇒ 𝑓 (𝑥) = 𝑓 (𝑦). (6.15)

Prove the first isomorphism theorem for sets: given a set 𝐴 with an equiva-
lence relation 𝑅, whenever 𝑓 : 𝐴→ 𝐵 is constant on the equivalence classes of 𝑅,
there exists a unique 𝑓 : 𝐴/𝑅 → 𝐵 such that

𝐴

𝑓

��

𝜋 𝑓

}}
𝐴/𝑅

𝑓

// 𝐵

(6.16)
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is commutative.

Exercise cl.13□ (Density of 𝑅 in 𝑅.) Let 𝑅 be a relation on a set 𝐴 and
𝑓 : 𝐴 → 𝐵 be a function. Similarly to cl.12, 𝑓 is said to be compatible with 𝑅 if
for each 𝑎, 𝑎′ ∈ 𝐴,

𝑎 𝑅 𝑎′ ⇒ 𝑓 (𝑎) = 𝑓 (𝑎′). (6.17)
Prove (or disprove) that if 𝑓 is compatible with 𝑅, then 𝑓 is compatible with 𝑅 (cf.
78).

The fundamental building block to understanding the construction of pushouts
in Set is the equivalence relation generated by a pair of functions 𝑓 , 𝑔.

Many problems in Mathematics involve identifying subspaces according to
certain rules or performing quotients (think, for example, of how integers modulo
𝑛 are usually defined).

One particular instance of such a situation is the following: we are given three
sets (or spaces, or types...) 𝐴, 𝐵, 𝐶 and functions 𝑓 , 𝑔 as follows,

𝐵 𝐴
𝑓oo 𝑔 // 𝐶 (6.18)

and we are trying to build a third set/space 𝑃 receiving maps from 𝐵,𝐶 and where
each point in 𝐵 of the form 𝑓 (𝑎) gets identified with the point 𝑔(𝑎) in 𝐶. In other
words, we want to construct a commutative square

𝐴
𝑓 //

𝑔

��

𝐵

��
𝐶 // 𝑃

(6.19)

subject to a certain universal property. We want the identification 𝑓 𝑎 ≈ 𝑔𝑎 to
happen “minimising” the quotient that we perform, or in other words, we want to
identify 𝑓 (𝑎) and 𝑔(𝑎) only and nothing else.

We want to perform this identification so that 𝑃 possesses a universal property.

Definition 6.2. Let 𝐴, 𝐵, 𝐶 be sets, and 𝑓 , 𝑔 be functions as follows:1

𝐵 𝐴
𝑓oo 𝑔 // 𝐶 (6.20)

Define a category Π( 𝑓 , 𝑔) as follows:
• objects are all triples (𝑋, 𝑝, 𝑞) where 𝑝 : 𝐶 → 𝑋 and 𝑞 : 𝐵→ 𝑋 are such

that the square

𝐴
𝑓 //

𝑔

��

𝐵

𝑞

��
𝐶

𝑝
// 𝑋

(6.21)

is commutative.

1A similar definition holds replacing sets 𝐴, 𝐵, 𝐶 with the objects 𝐴, 𝐵, 𝐶 of any category, and 𝑓 , 𝑔

with morphisms therein. We gladly leave this straightforward rephrasing to the reader.
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• Morphisms ℎ : (𝑋, 𝑝, 𝑞) → (𝑌, 𝑝′, 𝑞′) are the functions ℎ : 𝑋 → 𝑌 with
the property that ℎ ◦ 𝑝 = 𝑝′ and ℎ ◦ 𝑞 = 𝑞′, or in other words, ℎ : 𝑋 → 𝑌

fits in the diagram

𝐴
𝑓 //

𝑔

��

𝐵

𝑞

�� 𝑞′

��

𝐶

𝑝′ //

𝑝
// 𝑋

ℎ ��
𝑌

(6.22)

making both triangles commutative.

Exercise cl.14□ Define the identity morphisms 1(𝑋,𝑝,𝑞) in Π( 𝑓 , 𝑔), and com-
position using the category structure of Set. Prove that Π( 𝑓 , 𝑔) is a category.

Definition 6.3. The pushout of 𝑓 , 𝑔 (also called: the cofibered sum of 𝐵,𝐶
along 𝐴; the amalgam of 𝐵,𝐶 along 𝑓 , 𝑔; the cocartesian product of 𝑓 , 𝑔; etc.) is
the initial object of Π( 𝑓 , 𝑔).

In many cases, the pushout of 𝑓 , 𝑔 is denoted as 𝐵 +𝐴 𝐶.

Exercise cl.15□ Since 𝐵 +𝐴 𝐶 is defined as the initial object of Π( 𝑓 , 𝑔), it
must be unique up to a unique isomorphism; prove it.

More precisely, prove the following statement:

Define the category Π( 𝑓 , 𝑔) for any 𝑓 , 𝑔 as in (6.18); prove
that if the pushouts 𝐵 +𝐴 𝐶 exists, it is unique up to a unique
isomorphism in Π( 𝑓 , 𝑔). (It’s no more difficult to do this in Set
than elsewhere!)

In the category of sets and functions, the pushout 𝐵+𝐴𝐶 exists (we will build it
explicitly in cl.18); in many other categories (for example, in categories of sets with
algebraic structures: monoids, groups, abelian groups, vector spaces...) pushouts
exist, but they are usually more difficult to describe explicitly than they are in Set.

Let us start to analyse pushouts in a situation where they reduce to an already
known construction: when 𝐴 = ∅, 𝑓 : ∅ → 𝐵 and 𝑔 : ∅ → 𝐶 consist of the unique
functions from the empty set to 𝐵,𝐶 respectively (colloquially, the “initial maps”
of 𝐵,𝐶).

Recall the definition of the disjoint union or coproduct of 𝐵,𝐶: it’s the set
(𝐵 × {0}) ∪ (𝐶 × {1}), or more pictorially, the set obtained putting together 𝐵 and
𝐶 in a way that they have empty intersection:

𝐵 𝐶

𝐵 + 𝐶

(6.23)
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Exercise cl.16□ Prove that the coproduct of 𝐵,𝐶 satisfies the following (two-
fold) property: there exist functions 𝑖𝐵 : 𝐵→ 𝐵 +𝐶 and 𝑖𝐶 : 𝐶 → 𝐵 +𝐶 such that,
for every other pair of functions

𝐶
𝑝
// 𝑋 𝐵

𝑞
oo (6.24)

there exists a unique 𝑢 : 𝐵 + 𝐶 → 𝑋 making all parts of the following diagram
commutative:

𝐵 + 𝐶
𝑢

��
𝐶

𝑖𝐶

<<

𝑝
// 𝑋 𝐵

𝑞
oo

𝑖𝐵

bb

(6.25)

Exercise cl.17□ Prove that 𝐵 + 𝐶 is the pushouts of 𝑓 , 𝑔 if 𝑓 : ∅ → 𝐵 and
𝑔 : ∅ → 𝐶 are the initial maps.

Unwinding the request, you have to prove that

• there exists a commutative diagram

∅
𝑓 //

𝑔

��

𝐵

𝑖𝐵
��

𝐶
𝑖𝐶

// 𝐵 + 𝐶

(6.26)

• for every other commutative diagram like

∅
𝑓 //

𝑔

��

𝐵

𝑞

��
𝐶

𝑝
// 𝑋

(6.27)

there exists a unique 𝑢 : 𝐵 + 𝐶 → 𝑋 such that ℎ ◦ 𝑖𝐵 = 𝑞, ℎ ◦ 𝑖𝐶 = 𝑝.

Notation6.4□. I order to stress the dependence of 𝑢 : 𝐵 +𝐶 → 𝑋 above from
𝑝, 𝑞 this function is usually denoted

[
𝑝
𝑞

]
or, in a more type theore-y notation, as

unpack 𝑢(𝑧) as [𝑞(𝑧) if 𝑧 ∈ 𝐵, 𝑝(𝑧) if 𝑧 ∈ 𝐶] . (6.28)

This roughly means the following: 𝑢 acts on elements (is “computed”) in different
ways according to whether 𝑧 ∈ 𝐵 + 𝐶 belongs: if 𝑧 ∈ 𝐵, compute 𝑞(𝑧), otherwise
compute 𝑝(𝑧).

This little fact justifies the nomenclature: the pushout of 𝑓 , 𝑔 is an amalgam of
𝐵,𝐶 according to a rule specified by the structure of 𝐴 and the definition of 𝑓 , 𝑔; if
𝐴 is empty, this rule is empty as well, and there is no identification to perform: no
point of 𝐵 is identified with any point of 𝐶, because the set of all elements of the
form 𝑓 (𝑎) is empty (as well as the set of all elements of the form 𝑔(𝑎)).

Things get more interesting when 𝐴 is allowed to be nonempty, and many
known algebra and geometry constructions fall under this umbrella.
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Let 𝑓 , 𝑔 be functions as in (6.18); consider the coproduct 𝑃′ = 𝐵+𝐶 and define
a relation 𝑆 on 𝑃′ as follows: 𝑆 contains all pairs of the form ( 𝑓 𝑎, 𝑔𝑎) for each
𝑎 ∈ 𝐴.

Define 𝑃 = 𝑃′/𝑆, the quotient of 𝑃′ by the equivalence relation generated by
𝑆. As such, 𝑃 has a canonical function from 𝑃′, the projection to the quotient
𝜋𝑆 : 𝑃′ → 𝑃.

Define the diagram

𝐵
𝑖𝐵 // 𝑃 𝐶

𝑖𝐶oo (6.29)

as follows: 𝑖𝐵 is the composition 𝐵 → 𝐵 + 𝐶 = 𝑃′
𝜋𝑆−−→ 𝑃; similarly, define

𝑖𝐶 : 𝐶 → 𝑃′
𝜋𝑆−−→ 𝑃.

Exercise cl.18□ (An explicit construction of pushouts in Set.) Show that
(𝑃, 𝑖𝐵, 𝑖𝐶) as defined above is the pushouts of 𝑓 , 𝑔 in the category of sets.

In order to prove the universal property, assume given an object (𝑋, 𝑝, 𝑞) of
Π( 𝑓 , 𝑔); unwinding the definition, this amounts to a commutative diagram as

𝐴
𝑓 //

𝑔

��

𝐵

𝑞

��
𝐶

𝑝
// 𝑋.

(6.30)

This means that for each 𝑎 ∈ 𝐴, 𝑥 = 𝑓 (𝑎) and 𝑦 = 𝑔(𝑎) are such that 𝑞(𝑥) = 𝑝(𝑦).
Recall the definition of

[
𝑝
𝑞

]
above: the fact that if 𝑥 ≈ 𝑓 ,𝑔 𝑦 in 𝐵 +𝐶, then 𝑞𝑥 = 𝑝𝑦

can be rephrased as follows:

𝑥 ≈ 𝑓 ,𝑔 𝑦 ⇒
[
𝑝
𝑞

]
(𝑥) =

[
𝑝
𝑞

]
(𝑦) (6.31)

so that by cl.11 and cl.12,
[
𝑝
𝑞

]
is constant on the equivalence classes of 𝑆 and

hence (cf. cl.13) on the equivalence classes of 𝑆, and thus defines a unique function
𝑣 : 𝑃→ 𝑋 sending [𝑧] ∈ 𝑃 to the element computed as follows:

• choose a representative 𝑧 ∈ [𝑧];
• if 𝑧 ∈ 𝐵 × {0} ⊆ 𝐵 +𝐶, then 𝑣( [𝑧]) = 𝑞(𝑧); if 𝑧 ∈ 𝐶 × {1} ⊆ 𝐵 +𝐶, then
𝑣( [𝑧]) = 𝑝(𝑧).

This is a well-defined function, thanks to the commutativity in (6.30).

Exercise cl.19□ Prove that, in the notation established so far, 𝑣 : 𝑃 → 𝑋 is
the unique function making the following diagram commutative:

𝐴
𝑓 //

𝑔

��

𝐵

𝑖𝐵
�� 𝑞

��

𝐶

𝑝 //

𝑖𝐶

// 𝑃

𝑣 ��
𝑋

(6.32)

This concludes the proof that 𝑃 is the pushout of 𝑓 , 𝑔, i.e. the initial object of the
category Π( 𝑓 , 𝑔) defined in Definition 6.2.
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Exercise cl.20□ (Laborious exercise.) Provide an explicit construction for
pushouts in the category of abelian groups: given abelian groups 𝐴, 𝐵, 𝐶 and group
homomorphisms

𝐵 𝐴
𝑓oo 𝑔 // 𝐶 (6.33)

define 𝐻 as the subgroup of 𝐵 ⊕ 𝐶 generated by elements of the form ( 𝑓 𝑎,−𝑔𝑎)
with 𝑎 ∈ 𝐴.

Consider the quotient group 𝑃 = (𝐵 ⊕ 𝐶)/𝐻; show that 𝑃 is the pushout of
𝑓 , 𝑔. [Hint: quotienting for the subgroup 𝐻 so defined amounts to “killing” all
elements of the form 𝑓 𝑐−𝑔𝑐 identifying them to zero; this in turn amounts (formally
speaking) to identifying 𝑓 𝑐 ≈ 𝑔𝑐.]

Exercise cl.21□ Use the result in the previous exercise to compute the pushouts
that follow if 𝐶𝑛 denotes the cyclic group of order 𝑛 (or more concretely, the set of
integers modulo 𝑛):

pab1) The pushout of

𝐶3 0
𝑓 //𝑔oo 𝐶3

if both 𝑓 , 𝑔 are the zero map 𝑓 (𝑡) = 0, 𝑔(𝑡) = 0 for every 𝑡;
pab2) The pushout of

𝐶𝑚 Z
𝜋 //𝜋′oo 𝐶𝑛

if 𝜋, 𝜋′ are the projection on the quotient Z→ Z/𝑛Z;
pab3) The pushout of

𝐶9 𝐶3
𝑓 //𝑔oo 𝐶6

if 𝑓 (1) = 3, 𝑔(1) = 2;
pab4) The pushout of

𝐶3 𝐶2 //oo 𝐶5

(how many homomorphisms 𝐶2 → 𝐶3 and 𝐶2 → 𝐶5 are there? –Hint:
not many...; use item pab1.)

Exercise cl.22□ Prove that pushouts can be glued together: consider sets and
functions in the diagram

𝐶
𝑓 //

𝑔

��

𝐴
𝑓 ′ // 𝐵

𝐷

(6.34)

The pushout of 𝑓 ′ ◦ 𝑓 , 𝑔 can be built as follows: first, build the pushout of 𝑓 , 𝑔,

𝐶
𝑓 //

𝑔

��

𝐴

𝑞

��

𝑓 ′ // 𝐵

𝐷
𝑝
// 𝑃

(6.35)
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then build the pushout of 𝑓 ′, 𝑞,

𝐶
𝑓 //

𝑔

��

𝐴

𝑞

��

𝑓 ′ // 𝐵

𝑞′

��
𝐷

𝑝
// 𝑃

𝑝′
// 𝑄.

(6.36)

Prove that (𝑄, 𝑝′ ◦ 𝑝, 𝑞′) is the pushout of 𝑓 ′ ◦ 𝑓 , 𝑔.
In runic notation, the above result takes the mysterious form

𝑄 = (𝐴 +𝐶 𝐷) +𝐴 𝐵 � 𝐷 +𝐶 𝐵. (6.37)

Exercise cl.23□ Recall the definition of the category Dyn of (unpointed)
dynamical systems:

• Objects are pairs (𝑋, 𝑠) where 𝑠 : 𝑋 → 𝑋 is a function on the set 𝑋;
• Morphisms (𝑋, 𝑠) → (𝑌, 𝑡) are functions 𝑓 : 𝑋 → 𝑌 such that the

diagram
𝑋

𝑠 //

𝑓

��

𝑋

𝑓

��
𝑌

𝑡
// 𝑌

(6.38)

is commutative.

A dynamical system (𝑋, 𝑠) is called reversible if 𝑠 : 𝑋 → 𝑋 is an invertible
function. A morphism between two reversible dynamical systems is just a morphism
of dynamical systems.

Show that the inclusion functor RevDyn ↩→ Dyn admits a left adjoint, i.e. that
for every morphism

𝑓 : (𝑋, 𝑠) // (𝐴, 𝜎) (6.39)
where (𝐴, 𝜎) is a reversible dynamical system, there exist

• A reversible dynamical system ( �̄�, 𝑠) with a map 𝑢 : (𝑋, 𝑠) → ( �̄�, 𝑠) of
dynamical systems;
• a unique 𝑓 : �̄� → 𝐴 which is a morphism of dynamical systems, with the

property that 𝑓 ◦ 𝑢 = 𝑓 :

𝑋
𝑓 //

𝑢
��

𝐴

�̄�

𝑓

??
(6.40)

thus realising the isomorphism

Dyn(𝑋, 𝐴) � RevDyn( �̄�, 𝐴). (6.41)
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Exercise cl.24□ Define the following category:

1

����
0 //

// 2

(6.42)

where the parallel arrows are called 𝜄0, 𝜄1 : 1⇒ 2 and 𝚥0, 𝚥1 : 0⇒ 2.
The joint coequaliser for two pairs of functions 𝑖0, 𝑖1 : 𝑋1 ⇒ 𝑋2 and 𝑗0, 𝑗1 :

𝑋0 ⇒ 𝑋2 consists of a colimit for a diagram 𝑋 : J → Set of shape J ; this means
that there is a diagram

𝑋1

𝑖0
��

𝑖1
��

𝑋0
𝑗0 //

𝑗1
// 𝑋2

(6.43)

where 𝑋 (𝜄0) = 𝑖0, 𝑋 (𝜄1) = 𝑖1, etc., and a morphism 𝑡 : 𝑋2 → 𝐶 such that 𝑡𝑖0 = 𝑡𝑖1
and 𝑡 𝑗0 = 𝑡 𝑗1, and such that 𝑡 is initial with respect to this property, i.e. for every
other 𝑥 : 𝑋2 → 𝑍 such that 𝑥𝑖0 = 𝑥𝑖1 and 𝑥 𝑗0 = 𝑥 𝑗1 one has 𝑥 = 𝑥𝑡 for a unique
𝑥 : 𝐶 → 𝑋 .

Show that the joint coequaliser of (𝑖0, 𝑖1), ( 𝑗0, 𝑗1) can be obtained as follows:
start from the diagram (6.43) above, and consider the diagram

𝑋1

𝑖0
��

𝑖1
��

𝑋0
𝑗0 //

𝑗1
// 𝑋2 //

��

𝑈

��
𝑉 // 𝑃

(6.44)

where ℎ : 𝑋2 → 𝑈 is the coequaliser of ( 𝑗0, 𝑗1), 𝑘 : 𝑋2 → 𝑉 is the coequaliser of
(𝑖0, 𝑖1) and 𝑃 is the pushout of (𝑘, ℎ).

Exercise cl.25□ An object 𝐶 of a category C is called tiny if the functor
C(𝐶, ) preserves all colimits.

• Prove that the singleton ∗ of Set is a tiny object; is the coproduct of two
tiny objects still tiny? Is the two-element set ∗∐ ∗ tiny in Set? Prove
that Z is a tiny object in the category of abelian groups. Is the group
Z𝑛 =

∏𝑛
𝑖=1 Z still tiny?

• Prove that a functor 𝑃 ∈ [Cop,Set] is a tiny object if and only if it is a
retract of a representable functor.

Exercise cl.26□ (Transfinite constructions.) Consider the functor 𝐹 = 1 + _ :
Set→ Set sending a set 𝐴 to the coproduct 1 + 𝐴; consider the sequence

∅ 𝑢 // 𝐹∅ 𝐹𝑢 // 𝐹𝐹∅ 𝐹𝐹𝑢 // 𝐹𝐹𝐹∅ (6.45)
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or in other words the sequence ∅ → 1 → 2 → 3 → . . . , if 𝑛 denotes the set
{0, 1, . . . , 𝑛 − 1}. Show that the colimit of this sequence, regarded as a functor
(𝜔, ≤) → Set, is the set of natural numbers.

• What is the colimit of a similar sequence as in (6.45) (called the initial chain
of 𝐹) when instead of 𝐹 we consider the functor 𝐹′ : 𝐴 ↦→ 𝐸 + 𝐴 where
𝐸 is a fixed set of cardinality 𝜅?
• What is instead the colimit of the initial chain for the functor 𝐿 : Set →

Set : 𝐴 ↦→ 1 + 𝐴 × 𝑋 , where 𝑋 is a fixed set? (Hint: for every 𝑛 ≥ 1,
there is a simple expression for the 𝑛th iterate 𝐿𝑛𝐴 = 𝐿 . . . 𝐿∅.)
• Dualize the previous construction: compute the limit of the iterates of
𝐹, 𝐹′ and 𝐿 applied to the terminal morphisms 𝐹1 → 1, 𝐹′1 → 1
and 𝐿1 → 1: the terminal cochain of 𝐹, for example, consists of the
following diagram,

11 + 11 + 1 + 1
1 + ∇ ∇

and the terminal cochain of 𝐿 can be expressed as...

Exercise cl.27□ (The construction of coequalizers in Cat.) Consider two small
categories A,B and a pair of functors 𝐹, 𝐺 : A → B; suppose we have built the
coequalizer C in

A
𝐹

⇒
𝐺
B → C (6.46)

and apply the functor (−)𝑜 : Cat → Set sending a category to its set of objects:
show that the diagram

A𝑜
𝐹𝑜
⇒
𝐺𝑜

B𝑜 → C𝑜 (6.47)

remains a coequaliser in Set, and thus the object-class of C is precisely the quotient
set of C𝑜 modulo the minimal equivalence relation identifying the pairs of objets
(𝐹𝑎, 𝐺𝑎) (more precisely: the objects of C are the objects of B modulo the
transitive closure of the relation 𝑏 ∼ 𝑏′ ⇐⇒ ∃𝑎 : 𝐹𝑎 = 𝑏, 𝐺𝑎 = 𝑏′). We denote
equivalence classes [𝑏], [𝑏′] as 𝑄,𝑄′.

The set C([𝑏], [𝑏′]) is now defined as follows: consider the set of finite words
of contiguous morphisms in B, i.e. all the finite sequences

𝑏
𝑓1↔ 𝐴1

𝑓2↔ · · ·
𝑓𝑛↔ 𝐴𝑛

𝑓𝑛+1↔ 𝑏′ (6.48)

where an arrow can go in either direction, modded out with respect to the minimal
equivalence relation ≍ identifying the composition of adjacent morphisms, and
the images of each 𝑔 ∈ hom(A) via 𝐹, 𝐺: in other words, inductively define
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≍ by posing 𝐹𝑔 ≍ 𝐺𝑔 for all morphisms 𝑔 : 𝑏 → 𝑏′ in B and declaring that
𝑣 · 𝐹 (𝑔) · 𝑤 ≍ 𝑣′ · 𝐺 (𝑔) · 𝑤′ whenever 𝑣 ≍ 𝑣′ and 𝑤 ≍ 𝑤′.

Exercise cl.28□ Show that, defined in this way, C is a category: the identity
morphism id𝑄 is [id𝑏] for any 𝑏 ∈ 𝑄, and this is well-defined because if 𝑏 ∼ 𝑏′
then 𝑏 = 𝐹𝑎, 𝑏′ = 𝐺𝑎 for some 𝑎 ∈ A, but then 𝐹 (id𝑎) = id𝐹𝑎 and 𝐺 (id𝑎) = id𝐺𝑎
get identified in the quotient. Composition of two paths is just concatenation of
sequences, and it’s easily seen to pass to the quotient in C (just reason by induction,
first composing 𝐹𝑔, 𝐹𝑔′, then 𝐺𝑔, 𝐺𝑔′, then 𝐹𝑔, 𝐺𝑔; composing 𝑣 · 𝐹𝑔 · 𝑤 and
𝑣′ · 𝐺𝑔 · 𝑤′ uses the inductive hypotesis...)

Exercise cl.29□ Show that there is a functor 𝑃 : B → C given by "projection
to the quotient" in the obvious way, which is such that every functor 𝐻 : B → C
such that 𝐻𝐹 = 𝐻𝐺 is constant on the generators of the equivalence relation ≍.
Thus, 𝐻 uniquely factors through 𝑃, and the universal property is proved.
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CHAPTER 7

Adjoints

Exercise ad.1□ (A very small example with many many adjoints 2). Let [2]
be the category with two objects 0, 1 and a single nonidentity arrow 0 → 1; more
generally, let [𝑛] be the category

{0→ 1→ · · · → 𝑛 − 1} (7.1)

(in this convention, [1] is the terminal category, and [0] is the empty category;
such notation will soon come in handy; note that [𝑛] is the –unique up to monotone
bĳection– totally ordered set of cardinality 𝑛).

Show that there is a functor 𝑒 : [2] → [1] that admits both a left and a right
adjoint, 𝑑0 ⊣ 𝑒 ⊣ 𝑑1. Do such adjoints admit adjoints in turn? More precisely, can
you extend the string of adjoints 𝑑0 ⊣ 𝑒 ⊣ 𝑑1 to a larger 𝑙 ⊣ 𝑑0 ⊣ 𝑒 ⊣ 𝑑1 ⊣ 𝑟?

Exercise ad.2□ Let 𝐹 ⊣ 𝐺 ⊣ 𝐻 be three functors with 𝐺 : A → B; prove that
𝐹 is fully faithful if and only if 𝐻 is fully faithful.

Exercise ad.3□ Define a category Set𝑖 as follows:

• objects of Set𝑖 are pairs (𝐴, 𝑒 : 𝐴→ 𝐴) where 𝐴 is a set and 𝑒 : 𝐴→ 𝐴

is a function that is idempotent, i.e. 𝑒 ◦ 𝑒 = 𝑒;
• morphisms 𝑓 : (𝐴, 𝑒) → (𝐵, 𝑒′) are functions 𝑓 : 𝐴→ 𝐵 that ‘commute

with idempotents’, i.e. such that for every 𝑎 ∈ 𝐴, 𝑒′( 𝑓 (𝑎)) = 𝑓 (𝑒(𝑎)).
Define an obvious ‘forgetful’ functor𝑈 : Set𝑖 → Set sending each object (𝐴, 𝑒) to
𝐴 and 𝑓 (𝐴, 𝑒) → (𝐵, 𝑒′) to 𝑓 : 𝐴→ 𝐵. Does𝑈 have a left adjoint, a right adjoint?
Compute them explicitly, and address again the problem of extension above: if 𝑈
has a left adjoint 𝐿, does 𝐿 admit a left adjoint itself? If 𝑈 has a right adjoint 𝑅,
does 𝑅 admit a right adjoint itself?

Exercise ad.4□ Let C be a category with products where every functor 𝐴 × −
has a right adjoint; prove that if C has a zero object (cf. Definition 6.1), then it must
be the trivial category (with a single object and a single identity morphism).

Exercise ad.5□
• Disprove the false Cantor-Schröder-Bernstein theorem for categories: if

there exists a faithful functor 𝐹 : C → D and a faithful functor 𝐺 : D →
C, there is an equivalence of categories C � D;
• prove the true Cantor-Schröder-Bernstein theorem for categories: if there

exist a faithful functor 𝐹 : C → D and a faithful functor 𝐺 : D → C,
then C,D must be equivalent.

89
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Exercise ad.6□ Let 𝐹 ⊣ 𝐺 ⊣ 𝐻 be a triple of adjoints; show that 𝐹𝐺 ⊣ 𝐻𝐺
and 𝐺𝐹 ⊣ 𝐺𝐻. Let 𝐻 ⊣ 𝐹 ⊣ 𝐺 ⊣ 𝐾 be a quadruple of adjoints. Show that there
are adjunctions 𝐹𝐻 ⊣ 𝐹𝐺 ⊣ 𝐾𝐺 and 𝐻𝐹 ⊣ 𝐺𝐹 ⊣ 𝐺𝐾; each of these generates, in
turn, other 2 adjunctions 𝐹𝐻𝐹𝐺 ⊣ 𝐾𝐺𝐹𝐺 and 𝐹𝐺𝐹𝐻 ⊣ 𝐹𝐺𝐾𝐺, and... Define
(inductively, if you want) the ‘adjunction number’ ℓ𝑛 of a string 𝐹1 ⊣ · · · ⊣ 𝐹𝑛 to be
the number of distinct adjunctions that the string generates. Find ℓ666.

Exercise ad.7□ Let Δ be the category having objects the [𝑛] = {0 ≤ 1 ≤ · · · ≤
𝑛 − 1} defined above, and morphisms the monotone functions. Define maps

• 𝑑𝑛
𝑖

: [𝑛−1] → [𝑛] the only injective function missing the element 𝑖 ∈ [𝑛]
in its image;
• 𝑠𝑛

𝑗
: [𝑛+1] → [𝑛] the only surjective function assuming the value 𝑗 ∈ [𝑛]

twice.

Show that a morphism 𝛼 : [𝑛] → [𝑚] has a left adjoint, regarded as a functor, if
and only if 𝛼(𝑛) = 𝑚; in such a case, 𝛼𝐿 : 𝑖 ↦→ min{ 𝑗 ∈ [𝑛] | 𝛼( 𝑗) ≥ 𝑖}.

Deduce that for each 𝑗 ∈ [𝑛] the function 𝑠𝑛
𝑗

has a left adjoint; dualise both
statement: what is the condition on 𝛼 such that it has a right adjoint? Does 𝑠𝑛

𝑗
has

a right adjoint too?

Exercise ad.8□ Let 𝑃,𝑄 be two partially ordered sets, and 𝑓 : 𝑃 ⇆ 𝑄 : 𝑔 an
adjunction (a Galois connection, cf. Definition 1.9). Prove that an adjunction

[𝑃op,Set]

Lan 𝑓 //
oo 𝑓 ∗

𝑔∗ //
oo

Ran𝑔

[𝑄op,Set] . (7.2)

exists, and describe the way in which Σ 𝑓 and Π𝑔 act on objects and morphisms.

Exercise ad.9□ Define a category Adj∞(C) whose objects are infinite strings
of adjoints

{𝐹•} : · · · ⊣ 𝐹−1 ⊣ 𝐹0 ⊣ 𝐹1 ⊣ 𝐹2 ⊣ · · · (7.3)
between endofunctors of C, and whose morphisms are natural transformations
𝜂 : 𝐹0 → 𝐺0:

(1) prove that each 𝜂 induces a family {𝜂𝑘} of natural transformations such
that 𝜂2𝑛 : 𝐹2𝑛 → 𝐺2𝑛, 𝜂2𝑛+1 : 𝐺2𝑛+1 → 𝐹2𝑛+1;

(2) prove that if C = Ab is the category of abelian groups, Adj∞(C) has a
zero object. Does it have finite products?

Exercise ad.10□ A THC situation1 consists of a triple 𝔱𝔥𝔠 = {⊗,∧, [ , ]}
of (bi)functors between three categories S,A,B, defined by the adjunctions

B(𝑆 ⊗ 𝐴, 𝐵) � S(𝑆, [𝐴, 𝐵]) � A(𝐴, 𝑆 ∧ 𝐵). (7.4)

1Although the chemical formula C21H30O2 can describe multiple isomers, the term THC usually
refers to the Delta-9-THC isomer with chemical name (-)-trans-Δ9-tetrahydrocannabinol.
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Show that the variances of these functors are uniquely determined by these three
adjunctions: if ⊗ : S × A → B, then

∧ : Sop × B → A [ , ] : Aop × B → S. (7.5)

Show that starting from these functors 𝔱𝔥𝔠 = {⊗,∧, [ , ]} a new THC situation is
defined as 𝔱𝔥𝔠𝐼,𝐽 = {⊠, ⋏, ⟨ , ⟩}, on the categoriesS𝐼op×𝐽 ,A 𝐼 ,B𝐽 , for every pair
of categories 𝐼, 𝐽 ∈ Cat; if we put 𝐹 ⊠𝐺 ∈ B𝐽 , starting from 𝐹 ∈ S𝐼op×𝐽 , 𝐺 ∈ A 𝐼 ,
then

B𝐽 (𝐹 ⊠ 𝐺, 𝐻) � S𝐼op×𝐽 (𝐹, ⟨𝐺, 𝐻⟩) � A 𝐼 (𝐺, 𝐹 ⋏ 𝐻). (7.6)

Exercise ad.11□ Show that adjunctions have a natural action on THC situa-
tions: from 𝔱𝔥𝔠 = {⊗,∧, [ , ]} between categories S,A,B, and given a triple of
adjoints

• 𝑆 ⊣ 𝑆 ⊣ 𝑆 with 𝑆 : S → S′;
• �̂� ⊣ 𝐴 ⊣ �̌� with 𝐴 : A → A′;
• �̂� ⊣ 𝐵 ⊣ �̌� with 𝐵 : B → B′;

we have that {𝐵 ◦ (𝑆 ⊗ �̂�), 𝑆 ◦ ( �̂� ∧ �̌�), 𝐴 ◦ [𝑆, �̌�]} is a new THC situation on
S′,A′,B′.

Exercise ad.12□ (Isbell duality). Let A be a small category. Show that there
is a pair of adjoint functors

𝑂 : [Aop,Set] // [A,Set]opoo : 𝑆 (7.7)

where 𝑂 sends a functor 𝑃 : Aop → Set to the functor defined as

(𝐴 ∈ A) ↦→ [Aop,Set] (𝑃,A(−, 𝐴)) (7.8)

𝐴 ∈ A to [Aop,Set] (𝑃,A(−, 𝐴)), and 𝑆 sends a functor 𝑄 : A → Set to the
functor sending 𝐴 ∈ A to [A,Set] (𝑄,A(𝐴,−)).

Exercise ad.13□ A directed graph is a covariant functor on the category
Γ = {𝐸

𝑠

⇒
𝑡
𝑉}. Show that the forgetful functor 𝑈 : dGph → Set, i.e. the functor

sending a directed graph to its set of vertices, has both a left and a right adjoint.
Show that the left adjoint is given by the functor that sends a set 𝑋 to the

directed graph having 𝑋 as set of vertices, and no edges. How is the right adjoint
defined?

Exercise ad.14□ (A category where adjunctions are objects.) Let 𝐹 𝜖

𝜂
𝐺 :

A ⇀ X and 𝐹′
𝜖 ′
𝜂′
𝐺′ : A′ ⇀ X′ be adjunctions; a map from the first adjunction

to the second consists of a pair of functors 𝐻 : A → A′, 𝐾 : X → X′ and a natural
transformation 𝛼 filling the square

A

𝐹

��

𝐻 //

}� 𝛼

A′

𝐹′

��
X

𝐾

// X′
(7.9)



Tuesday 31st January, 2023—22:21

92 7. ADJOINTS

• Show that a map between the two adjunctions could have been equivalently
defined as the same pair of functors 𝐻, 𝐾 , plus a natural transformation

A

𝐹

��

𝐻 // A′

𝐹′

��
X

𝐾

// X′

=E𝛽 (7.10)

(Hint: define a correspondence from one kind of square to the other,
‘pasting unit and counit’:

A

𝐹

��

𝐻 //

}� 𝛼

A′

𝐹′

��
↦→

X 𝐺 //

|� 𝜖

A

𝐹

��

𝐻 //

}� 𝛼

A′

𝐹′

��
}� 𝜂′

X
𝐾

// X′ X
𝐾

// X′
𝐺′
// A′

(7.11)

and show that it is bĳective using the zig-zag identities.)
• When A = A′,X = X′ and 𝐻, 𝐾 are the respective identities, we call

the natural transformations 𝛼, 𝛽 corresponding to each other under the
equivalence above a conjugate pair. Show that when 𝛼, 𝛽 are conjugate
in this sense, the diagrams

𝐹𝐺′

𝛼𝐺′

��

𝐹𝛽 // 𝐹𝐺

𝜖

��

1

𝜂′

��

𝜂 // 𝐺𝐹

𝐺𝛼
��

𝐹′𝐺′
𝜖 ′

// 1 𝐺′𝐹′
𝛽𝐹′
// 𝐺𝐹′

(7.12)

commute.
• In fact, one can show a sharper result, that the following conditions are

equivalent: i) 𝛼, 𝛽 form a conjugate pair; ii) the left square above com-
mutes; iii) the right square above commutes.
• Define functors

Cat(A,X) Adj(A,X)𝝀oo 𝝆 // Cat(X,A) (7.13)

as (𝐹 ⊣ 𝐺)𝝀 = 𝐹 and (𝐹 ⊣ 𝐺)𝝆 = 𝐺. Study the properties of (−)𝝀 and
(−)𝝆: are they full, faithful, conservative?

Exercise ad.15□ (A category where adjunctions are morphisms.) Let X,Y be
categories. An adjoint morphism from X to Y consists of an adjunction 𝐹 ⊣ 𝐺
denoted

X
𝐹 // Y
𝐺

oo (7.14)

and we now define a composition operation between adjoint morphisms: given a
diagram

X
𝐹 // Y
𝐺

oo
𝐹′ // Z
𝐺′
oo (7.15)
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define a candidate adjunction 𝐹′𝐹 ⊣ 𝐺𝐺′ having unit

𝜂 ★ 𝜂′ := 1 // 𝐺𝐹
𝐺𝜂′𝐹 // 𝐺𝐺′𝐹′𝐹 (7.16)

and counit
𝜖 ′ ★ 𝜖 := 𝐹′𝐹𝐺𝐺′ 𝐹

′ 𝜖𝐺 // 𝐹′𝐺′ // 1 (7.17)
Let Adj(X,Y) be the collection of adjoint morphisms from X to Y; show that this
defines an associative and unital composition operation

Adj(Y,Z) × Adj(X,Y) // Adj(X,Z)

(𝐹′
𝜖 ′
𝜂′
𝐺′), (𝐹 𝜖

𝜂
𝐺) � // (𝐹′𝐹

𝜖 ′★𝜖

𝜂★𝜂′
𝐺𝐺′, )

(7.18)

Exercise ad.16□ Show that if

Adj is the prototype of a 2-category, i.e. a structure having
• objects or 0-cells denoted by 𝑋,𝑌, 𝑍, . . . ;
• morphisms or 1-cells denoted by 𝑓 : 𝑋 → 𝑌 ;
• transformations or 2-cells denoted by 𝛼 : 𝑓 ⇒ 𝑔

all together subject to the requirement that 1-cells 𝑓 : 𝑋 → 𝑌 form the objects of a
category K(𝑋,𝑌 ) whose morphisms are precisely the 2-cells 𝛼, and such that the
composition operation

_#0_ : K(𝑋, 𝐵) × K(𝐴, 𝑋) // K(𝐴, 𝐵) (7.19)

is a bifunctor.

Exercise ad.17□ Show that the bifunctoriality of composition amounts to the
request that

(𝛾#1𝛿)#0(𝛼#1𝛽) = (𝛾#0𝛼)#1(𝛿#0𝛽). (7.20)
This is called the interchange law.

Exercise ad.18□ Prove that two functors 𝐹 : C ⇆ D : 𝐺 are adjoints,
with 𝐹 left adjoint to 𝐺, if and only if the two comma categories (𝐹/1D) and
(1C/𝐺) are ‘equivalent over C × D’, namely there is an equivalence of categories
𝑈 : (𝐹/1D) � (1C/𝐺) : 𝑉 with the property that the diagram

(𝐹/1)

𝑋 $$

(1/𝐺)

𝑌zz
C × D

(7.21)

is commutative (choosing either𝑈 or its inverse 𝑉 as horizontal arrow).
Here, 𝑋 : (𝐹/1) → C×D is the functor that sends an object (𝐶, 𝐷, 𝐹𝐶 → 𝐷)

to the pair (𝐶, 𝐷), and similarly 𝑌 sends an object (𝐶, 𝐷,𝐶 → 𝐺𝐷) to the pair
(𝐶, 𝐷).

Exercise ad.19□ Let (Z, ≤) be the totally ordered set of integers, regarded as a
category, and 𝑓 : Z→ Z a monotone function, regarded as an endofunctor. Show
that the following conditions are equivalent:

c1) 𝑓 has a left adjoint 𝑓𝐿;
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c2) 𝑓 has a right adjoint 𝑓𝑅;
c3) the image 𝑓 (Z) of 𝑓 is unbounded from below and from above.

(hint: show that 𝑓 has a right adjoint if and only if the following condition holds:

d1) each set 𝑆𝑚 = {𝑛 | 𝑓 𝑛 ≤ 𝑚} is nonempty and bounded from above; thus
𝑓𝑅 (𝑚) := max 𝑆𝑚.

Show that this, in turn, is equivalent to the third condition above. Dualise for left
adjoints.)

Let 𝑓 : Z→ Z be the map sending an integer 𝑘 to 2𝑘 , so that the image of 𝑓 is
2Z; what are the left (and the right) adjoints 𝑓𝐿 , 𝑓𝑅 of 𝑓 ?

Describe the monads obtained from the adjunction 𝑓𝐿 ⊣ 𝑓 and from the ad-
junction 𝑓 ⊣ 𝑓𝑅.

Exercise ad.20□ (Induced and coinduced 𝐺-representations). Let 𝑖 : 𝐻 ≤ 𝐺
be the inclusion of a subgroup regarded as a functor between one-object categories;
if 𝑘 is a field, the category of 𝑘-linear representations of 𝐺 can be identified with
the functor category [𝐺,Vect𝑘], and similarly for 𝐻. (Make this statement precise.)

The scope of this exercise is to show that the functor

[𝐻,Vect] → [𝐺,Vect] (7.22)

induced by precomposing with 𝑖 (=restricting the action of 𝐺 to the subgroup 𝐻)
has both a left and a right adjoint, i.e. that every 𝑘-linear representation of 𝐻 can
be extended in a maximal and minimal way to a representation of the whole 𝐺.

• Show that there is an equaliser diagram

hom𝑘 [𝐻 ] (𝑘 [𝐺], 𝑉) // hom𝑘 (𝑘 [𝐺], 𝑉) //
//
∏
ℎ∈𝐻 hom(𝑘 [𝐺], 𝑉) (7.23)

where 𝑘 [𝐺] is the group 𝑘-algebra of ef16, and the two parallel maps
are obtained as follows: 𝑙ℎ : hom(𝑘 [𝐺], 𝑉) → hom(𝑘 [𝐺], 𝑉) is ob-
tained sending 𝑓 : 𝑘 [𝐺] → 𝑉 to 𝑓 (ℎ._), and 𝑟ℎ : hom(𝑘 [𝐺], 𝑉) →
hom(𝑘 [𝐺], 𝑉) sending 𝑓 to ℎ. 𝑓 (_).
• Show that there is a coequaliser diagram∐

ℎ∈𝐻 𝐾 [𝐺] ⊗𝑘 𝑉
//
// 𝑘 [𝐺] ⊗𝑘 𝑉 // 𝑘 [𝐺] ⊗𝑘 [𝐻 ] 𝑉 (7.24)

obtained quotienting by the relation prescribing (ℎ.𝛼) ⊗ 𝑣 − 𝛼 ⊗ (ℎ.𝑣).

Exercise ad.21□ Let 𝑅, 𝑆 be unital rings, and 𝑓 : 𝑅 → 𝑆 an homomorphism.
Define a functor

𝑓 ∗ : Mod𝑆 // Mod𝑅 (7.25)
so that each 𝑆-module 𝑁 is equipped with an action of 𝑅 as follows: 𝑟.𝑛 := 𝑓 (𝑟).𝑛;
show that

• 𝑓 ∗ has a left adjoint 𝑓! and describe its action on objects and morphisms;
• 𝑓 ∗ has a right adjoint 𝑓∗ and describe its action on objects and morphisms.

(Hint: let 𝑀 be an 𝑅-module; show that 𝑆 has a natural structure of 𝑅-module
induced via 𝑓 and that 𝑓!(𝑀) � 𝑓 ∗𝑆 ⊗ 𝑀; dualize for 𝑓∗)
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Exercise ad.22□ A notable result in the theory of adjoint functors is the
adjoint functor theorem, establishing ufficient condition for the existence of a
left adjoint to a functor 𝐹 : C → D that preserves all limits: a functor 𝐹 that pre-
serves all limits has a left adjoint if and only if it satisfies a certain condition known
as the solution set condition; a key result towards the proof of this equivalence is
the following initial object lemma:

Let C be a category admitting all small limits; then, C has an
initial object if and only if it has a weakly initial family, i.e. a
set of objects {𝑊𝑖 | 𝑖 ∈ 𝐼} with the property that for every 𝑋 ∈ C
there exists at least (but possibly many) arrow𝑊𝑖 (𝑋) → 𝑋 .

Prove the initial object lemma, following this guide:

• If C has an initial object, it obviously has a weakly initial family;
• Conversely, build the product𝑊 =

∏
𝑖∈𝐼𝑊𝑖 of all the elements of a weakly

initial family.
• Consider the joint equaliser

𝐾
𝑘 // 𝑊

////... // 𝑊 (7.26)

of all endomorphisms of𝑊 (this means that 𝑘 has the property that 𝑘𝑢 = 𝑘𝑣

for every pair 𝑢, 𝑣 : 𝑊 → 𝑊 , and it is terminal with this property);
• 𝐾 is a weakly initial object: why? Show that 𝐾 is an initial object: assume
𝑓 , 𝑔 : 𝐾 → 𝑋 are parallel arrows out of 𝐾; show that 𝑓 = 𝑔 (hint: 𝑓 = 𝑔
if and only if their equaliser is isomorphic to 𝐾).

Exercise ad.23□ Let 𝑃, 𝑅 be two posets; show that there is a partial order
structure on the set 𝑅𝑃 of all monotone functions 𝑃→ 𝑅 such that

Pos(𝑄, 𝑅𝑃) � Pos(𝑃 ×𝑄, 𝑅) (7.27)

is an isomorphism natural in all its components 𝑃,𝑄, 𝑅.

Let C,D be categories. We define a triple of adjoints to be a triple of functors
𝐿, 𝐹, 𝑅 such that

• 𝐹 : C → D and 𝐿, 𝑅 : D → C;
• 𝐿 is a left adjoint for 𝐹, and 𝑅 is a right adjoint for 𝐹.

We denote a triple of adjoints with the following stenography:

𝐿 ⊣ 𝐹 ⊣ 𝑅 : C 𝐹 // D . (7.28)

Exercise ad.24□

• Let 𝜏, 𝜏′ be topologies on the same set 𝑋 and suppose 𝜏 ⊆ 𝜏′ (so, every
open subset in 𝜏 is also open for 𝜏′); show that there is a triple of adjoints

𝑗! ⊣ 𝑗∗ ⊣ 𝑗∗ : [𝜏′,Set]
𝑗∗ // [𝜏,Set] (7.29)

induced between categories of functors into Set.
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• (compare with ad.20) Let 𝐺, 𝐻 be two groups and 𝑓 : 𝐺 → 𝐻 a homo-
morphism between them; show that there is a triple of adjoints

𝑓! ⊣ 𝑓 ∗ ⊣ 𝑓∗ : [𝐻,Set]
𝑗∗ // [𝐺,Set] (7.30)

induced between categories of functors into Set.

Exercise ad.25□ Let 𝑆 be a set; define a category 𝐵[𝑆] = {0
{𝑠}
−−→ 1} having

two objects 0, 1 and only non-identity morphisms in the set 𝑆 = 𝐵[𝑆] (0, 1); consider
the diagram

{•}
𝑑0 //

𝑑1

// 𝐵[𝑆] (7.31)

where 𝑑𝑖 : • ↦→ 𝑖. Describe explicitly the coequalizer (in the category Cat, cf.
cl.27–cl.29) of (7.31) and the universal map 𝑞 : 𝐵[𝑆] → 𝐶.

Exercise ad.26□ Show that there is an equaliser diagram

[𝐶,Set]
𝑞∗ // [0⇒ 1,Set]

𝑑∗0 //

𝑑∗1

// Set (7.32)

where
• 𝑞∗ = [𝑞,Set] is the ‘precomposition with 𝑞’ functor 𝑃 ↦→ 𝑃 ◦ 𝑞;
• we identify the category Gph of digraphs with the functor category [0⇒

1,Set];
• the category [𝐶,Set] is the category of sets equipped with an action of

the free monoids 𝑀 = N⟨𝑠, 𝑡⟩.

Definition 7.1. A 2-generated monoid consists of a monoid 𝑀 appearing as
a quotient of N⟨𝑠, 𝑡⟩, i.e. as a coequaliser diagram

𝑁
//
// N⟨𝑠, 𝑡⟩ // 𝑀 (7.33)

Exercise ad.27□ Show that 𝑞∗ is injective on objects and faithful, but not full.
What are the morphisms in the image of 𝑞∗

𝑋𝑌
: [𝐶,Set] → Gph?

Show that for every 2-generated monoid we get a triple of adjoints in a similar
fashion as before.

Let Gph = [0⇒ 1,Set] be the category of digraphs and aNet = [N⟨𝑠, 𝑡⟩,Set]
the category appearing in the coequaliser (7.32).

Exercise ad.28□ Prove that there exists a functor 𝐷 : Gph→ aNet defined as
follows:

• on objects sends a graph 𝑲 = (𝐾0, 𝐾1, 𝑠, 𝑡) to the set 𝐾0 + 𝐾1 equipped
with the action

𝐾0 + 𝐾1
𝜎 //

𝜏
// 𝐾0 + 𝐾1 (7.34)

where 𝜎 = [𝑖1, 𝑖1 ◦ 𝑠] and 𝜏 = [𝑖1, 𝑖1 ◦ 𝑡];
• on morphisms of graphs 𝑓 : 𝑲 → 𝑯, it acts as the bifunctor _+ _ sending
( 𝑓0, 𝑓1) to [ 𝑓0, 𝑓1] : 𝐾0 + 𝐾1 → 𝐻0 + 𝐻1.
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Exercise ad.29□ Prove that the functor 𝐷 defined in ad.28 has a right adjoint.

Dualise the previous couple of results:

Exercise ad.30□ Define a functor𝑊 : Gph→ aNet; instead of taking a graph
𝑲 to the coproduct of edges and vertices, let’s define the carrier of𝑊𝑲 to be𝐾0×𝐾1,
and two functions 𝜎, 𝜏 : 𝑊𝑲 → 𝑊𝑲 as follows:

𝐾0 × 𝐾1
𝜎 //

𝜏
// 𝐾0 × 𝐾1 (7.35)

where 𝜎 = ⟨𝜋1, 𝑠 ◦ 𝜋1⟩ and 𝜏 = ⟨𝜋1, 𝑡 ◦ 𝜋1⟩ if 𝑠, 𝑡 : 𝐾1 → 𝐾0 are the source and
target functions of the graph.

Fill in the details of this construction; prove that𝑊 has a left adjoint, dualizing
ad.29.

Exercise ad.31□ Show that there exists a quadruple of adjoint functors

𝜋0 ⊣ 𝑑 ⊣ (−)𝑜 ⊣ 𝑐 (7.36)

where 𝜋0 : Cat → Set is the functor sending a category C to its set of connected
components, i.e. to the coequaliser

hom(C) //
// C𝑜 // 𝜋0(C). (7.37)
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