Category Theory and its Applications – ITI9200

Exercise sheet 1

assigned: February 26, 2023 due: March 8, 2023

Exercise 1: Let X denote a set, and find a relation $R \subseteq X \times X$ that is

- reflexive and symmetric, but not transitive;
- symmetric and transitive, but not reflexive;
- reflexive and transitive, but not symmetric;
- reflexive, but neither symmetric nor transitive;
- symmetric, but neither reflexive nor transitive;
- transitive, but neither reflexive nor symmetric;
- not symmetric, not transitive, not reflexive.

(You can choose different sets X for each item of the list; but additional points if you manage to find the same X with a different relation on it for each item.)

Exercise 2:

(In this exercise, assume all ordered sets are thin, i.e. the order relation is antisymmetric.) Recall that a *Galois connection* between two ordered sets P, Q consists of a pair $f_* : P \leftrightarrows Q : f^*$ of monotonic functions with the property that

$$f_*p \le q \iff p \le f^*q$$

The map f_* is called the *left part* of the Galois connection, and f^* is called the *right part*.

- Prove that there is a unique monotone function $!_P : P \to [1]$ (read: 'bang P'), where [1] is the ordered set having only one point $\{*\}$, and the obvious order relation $* \leq *$ is the only possible choice.
- Prove that P has a top element if and only if $!_P$ is the left part of a Galois connection; dually, prove that P has a bottom element if and only if $!_P$ is the right part of a Galois connection.
- Let $f_*: P \leftrightarrows Q: f^*$ be a Galois connection; prove the *Galois identities*

$$\forall p \in P, \ f_*f^*f_*(p) = f_*(p) \qquad \forall q \in Q, \ f^*f_*f^*(q) = f^*(q)$$

Exercise 3:

(On down-sets.) Let (P, \leq) be a thin poset; a *down-set* S of P is a subset $S \subseteq P$ such that if $x \in S$ and $y \leq x$, then $y \in S$. Let DP denote the set of all down-sets of P, ordered by inclusion; for each $x \in P$, define the downset $\downarrow x$ generated by x as the set $\{y \in P \mid y \leq x\}$.

• Show that the map $x \mapsto \downarrow x$ is a monotone and injective function $\downarrow(-) : P \to DP$, i.e. show that

 $a \leq b \Rightarrow {}^{\downarrow}a \leq {}^{\downarrow}b; \qquad {}^{\downarrow}a = {}^{\downarrow}b \Rightarrow a = b$

• Let (P, \leq) admit suprema for all down-sets; show that $S \mapsto \sup S$ defines a monotone map $DP \to P$, and show that

$$\sup S \le x \iff S \subseteq {}^{\downarrow}x$$

for every $S \in DP$ and $x \in P$. Compare $(\sup S)^{\downarrow}$ and S: who is contained in the other? Compare $\sup(x^{\downarrow})$ and x, who is bigger?

• Define $\downarrow U := \bigcup_{x \in U} \downarrow x$ for every $U \subseteq P$. Prove that U is a down-set if and only if $\downarrow U = U$. Is it true that $\downarrow \downarrow U = \downarrow U$?

Exercise 4:

(Algebraic and order lattices.) An algebraic lattice (X, \land, \lor) is a set X equipped with binary operations \land, \lor enjoying the following properties: for all $a, b, c \in X$,

- (commutative) $a \wedge b = b \wedge a \in a \lor b = b \lor a$;
- (associative) $a \land (b \land c) = (a \land b) \land c$ and $a \lor (b \lor c) = (a \lor b) \lor c$;
- (absorption laws) $a \lor (a \land b) = a$ and $a \land (a \lor b) = a$.

Given this,

1. Prove that from the absorption laws it follows that both \wedge and \vee are *idempotent* operations: for all $a \in X$, one has

$$a \wedge a = a$$
 $a \vee a = a$.

- 2. If (X, \wedge, \vee) is an algebraic lattice, we can define a thin order relation on X by defining $a \leq^a b$ if $a \wedge b = a$. Prove that $a \leq^a b$ if and only if $a \vee b = b$; prove that for every $a, b, c \in X$ the following inequalities hold
 - D1) $(a \wedge b) \vee (a \wedge c) \leq^{a} a \wedge (b \vee c);$
 - D2) $a \lor (b \land c) \leq^{a} (a \lor b) \land (a \lor c).$
- 3. Prove that (X, \leq^{a}) has the property that every two elements $x, y \in X$ have a sup (and this sup is precisely $x \lor y$) and an inf (precisely $x \land y$).
- 4. Prove that (X, \leq^{a}) has a top element if and only if there exists an element $t \in X$ such that $x \wedge t = t \wedge x = x$ for every $x \in X$; dually, (X, \leq^{a}) has a bottom element if and only if there exists $b \in X$ such that $x \vee b = b \vee x = x$ for every $x \in X$.
- 5. Let $n \ge 1$ be a natural number, and let [n] denote the finite set $\{1, \ldots, n\}$ with n elements; call P[n] the set of all subsets of [n]. From the previous points it follows that $(P[n], \cup, \emptyset)$ is a commutative monoid. How many monoid homomorphisms are there, of type

$$\varphi: (P[n], \cup, \varnothing) \to (\mathbb{N}, +, 0)$$

(hint: every element U of P[n] is such that $U \cup U = U$, so...)?