Category Theory and its Applications - ITI9200

Exercise sheet 1

assigned: February 26, 2023
due: March 8, 2023

Exercise 1:

Let X denote a set, and find a relation $R \subseteq X \times X$ that is

- reflexive and symmetric, but not transitive;
- symmetric and transitive, but not reflexive;
- reflexive and transitive, but not symmetric;
- reflexive, but neither symmetric nor transitive;
- symmetric, but neither reflexive nor transitive;
- transitive, but neither reflexive nor symmetric;
- not symmetric, not transitive, not reflexive.
(You can choose different sets X for each item of the list; but additional points if you manage to find the same X with a different relation on it for each item.)

Exercise 2:

(In this exercise, assume all ordered sets are thin, i.e. the order relation is antisymmetric.) Recall that a Galois connection between two ordered sets P, Q consists of a pair $f_{*}: P \leftrightarrows Q: f^{*}$ of monotonic functions with the property that

$$
f_{*} p \leq q \Longleftrightarrow p \leq f^{*} q
$$

The map f_{*} is called the left part of the Galois connection, and f^{*} is called the right part.

- Prove that there is a unique monotone function $!_{P}: P \rightarrow[1]$ (read: 'bang P '), where [1] is the ordered set having only one point $\{*\}$, and the obvious order relation $* \leq *$ is the only possible choice.
- Prove that P has a top element if and only if $!_{P}$ is the left part of a Galois connection; dually, prove that P has a bottom element if and only if $!_{P}$ is the right part of a Galois connection.
- Let $f_{*}: P \leftrightarrows Q: f^{*}$ be a Galois connection; prove the Galois identities

$$
\forall p \in P, f_{*} f^{*} f_{*}(p)=f_{*}(p) \quad \forall q \in Q, f^{*} f_{*} f^{*}(q)=f^{*}(q)
$$

Exercise 3:

(On down-sets.) Let (P, \leq) be a thin poset; a down-set S of P is a subset $S \subseteq P$ such that if $x \in S$ and $y \leq x$, then $y \in S$. Let $D P$ denote the set of all down-sets of P, ordered by inclusion; for each $x \in P$, define the downset ${ }^{\downarrow} x$ generated by x as the set $\{y \in P \mid y \leq x\}$.

- Show that the map $x \mapsto^{\downarrow} x$ is a monotone and injective function ${ }^{\downarrow}(-): P \rightarrow D P$, i.e. show that

$$
a \leq b \Rightarrow \downarrow a \leq \downarrow b ; \quad \downarrow^{\downarrow} a=\downarrow b \Rightarrow a=b
$$

- Let (P, \leq) admit suprema for all down-sets; show that $S \mapsto \sup S$ defines a monotone map $D P \rightarrow P$, and show that

$$
\sup S \leq x \Longleftrightarrow S \subseteq{ }^{\downarrow} x
$$

for every $S \in D P$ and $x \in P$. Compare $(\sup S)^{\downarrow}$ and S : who is contained in the other? Compare $\sup \left(x^{\downarrow}\right)$ and x, who is bigger?

- Define ${ }^{\downarrow} U:=\bigcup_{x \in U}{ }^{\downarrow} x$ for every $U \subseteq P$. Prove that U is a down-set if and only if ${ }^{\downarrow} U=U$. Is it true that ${ }^{\downarrow \downarrow} U={ }^{\downarrow} U$?

Exercise 4:

(Algebraic and order lattices.) An algebraic lattice (X, \wedge, \vee) is a set X equipped with binary operations \wedge, \vee enjoying the following properties: for all $a, b, c \in X$,

- (commutative) $a \wedge b=b \wedge a$ e $a \vee b=b \vee a$;
- (associative) $a \wedge(b \wedge c)=(a \wedge b) \wedge c$ and $a \vee(b \vee c)=(a \vee b) \vee c ;$
- (absorption laws) $a \vee(a \wedge b)=a$ and $a \wedge(a \vee b)=a$.

Given this,

1. Prove that from the absorption laws it follows that both \wedge and \vee are idempotent operations: for all $a \in X$, one has

$$
a \wedge a=a \quad a \vee a=a
$$

2. If (X, \wedge, \vee) is an algebraic lattice, we can define a thin order relation on X by defining $a \leq^{\text {a }} b$ if $a \wedge b=a$. Prove that $a \leq^{\text {a }} b$ if and only if $a \vee b=b$; prove that for every $a, b, c \in X$ the following inequalities hold
D1) $(a \wedge b) \vee(a \wedge c) \leq^{\text {a }} a \wedge(b \vee c)$;
D2) $a \vee(b \wedge c) \leq^{\mathrm{a}}(a \vee b) \wedge(a \vee c)$.
3. Prove that $\left(X, \leq^{\text {a }}\right)$ has the property that every two elements $x, y \in X$ have a sup (and this sup is precisely $x \vee y$) and an inf (precisely $x \wedge y$).
4. Prove that $\left(X, \leq^{\mathrm{a}}\right)$ has a top element if and only if there exists an element $t \in X$ such that $x \wedge t=t \wedge x=x$ for every $x \in X$; dually, $\left(X, \leq^{\text {a }}\right)$ has a bottom element if and only if there exists $b \in X$ such that $x \vee b=b \vee x=x$ for every $x \in X$.
5. Let $n \geq 1$ be a natural number, and let $[n]$ denote the finite set $\{1, \ldots, n\}$ with n elements; call $P[n]$ the set of all subsets of [n]. From the previous points it follows that $(P[n], \cup, \varnothing)$ is a commutative monoid. How many monoid homomorphisms are there, of type

$$
\varphi:(P[n], \cup, \varnothing) \rightarrow(\mathbb{N},+, 0)
$$

(hint: every element U of $P[n]$ is such that $U \cup U=U$, so...)?

