
Lab 6

Functional Programming (ITI0212)

2023-03-10

This week we are learning about totality for data and codata. An expression that is total is safe
in the sense that trying to evaluate it won’t cause our program to crash or hang.

Total expressions must be covering, in the sense that they must be able to handle all possible cases
that can arise. If a function is not covering then it will cause our program to crash if we ever use
one of the missing cases. Idris checks coverage algorithmically, and considers coverage failure to
be a type error. In addition to coverage, totality requires one additional condition to ensures that
our programs won’t hang.

For inductive types this condition is termination: evaluation must finish in finite time. Unlike
coverage, termination cannot be decided algorithmically due to the unsolvability of the halting
problem. So Idris makes the following conservative approximation: it accepts as terminating a
function whose argument type is inductive if every recursive call is on a proper subterm.

For coinductive types the additional condition is productivity: evaluation must reach a constructor
form in finite time. Unlike with inductive types, we don’t evaluate the recursive arguments to
constructors of coinductive types because they may be infinite. Like termination for inductive
types, productivity for coinductive types is not algorithmically decidable. So Idris makes the
following conservative approximation: it accepts as productive an expression whose result type is
coinductive if every recursive occurrence is guarded by a constructor (and thus by an implicit or
explicit Delay).

Task 1
Write a function that returns a colist containing the same elements in the same order as the
argument list.

coL : List a -> Colist a

Write your definition so that you and Idris agree that it is total.

Note: The type constructor Colist is in the standard library, but you need to import the module
Data.Colist in order to use it.

Task 2
Write a function that returns a list containing the same elements in the same order as the argument
colist.

uncoL : Colist a -> List a

No function that satisfies this specification can be total—why not? Write an expression uncoL
?sequence that does not produce a result in finite time.

Task 3
Write the following function that computes the length of a colist.

length : Colist a -> Conat

1



Write your definition so that you and Idris agree that it is total. Why does the result type need
to be Conat rather than Nat?

Note: The coinductive type Conat is not (yet) in the standard library, but you can copy it from
lecture 6.

Task 4
Write the filter function for colists, which keeps only those elements of the argument sequence
that satisfy the given predicate:

filter : (a -> Bool) -> Colist a -> Colist a

No function that satisfies this specification can be total—why not? Write an expression filter
?predicate ?sequence that does not produce a result in finite time.

Task 5
Unlike for inductive types, the collection of constructors for a coinductive type need not have a
“base case”, i.e. a constructor without arguments of the type in question. The following coinductive
type of infinite sequences, or “streams” is in the standard library.

data Stream : (a : Type) -> Type where
(::) : a -> Inf (Stream a) -> Stream a

Write the function

unroll : (a -> a) -> a -> Stream a

so that unroll f x generates the infinite sequence [x , f x , f (f x), ...].

For example:

Lab6> take 5 (unroll S 1)
[1, 2, 3, 4, 5]

where the finite prefix function take : Nat -> Stream a -> List a is in the standard
library.

Write your definition so that you and Idris agree that it is total.

Task 6
Write a function that zips a stream with a list.

zipSL : (a -> b -> c) -> Stream a -> List b -> List c

For example:

Lab6> zipSL MkPair (unroll S 1) [’a’ , ’b’ , ’c’ , ’d’ , ’e’]
[(1,’a’) , (2,’b’) , (3,’c’) , (4,’d’) , (5,’e’)]

Task 7 (optional challenge)
The goal of this task is to define multiplication for conatural numbers:

mul : Conat -> Conat -> Conat

to complete the Num implementation from lecture 6:

implementation Num Conat where
(+) = add
(*) = mul
fromInteger = coN . fromInteger

2



We will need to think carefully in order to do this in a way that is total.

First, let’s stipulate that the following property of Nat multiplication should remain true for Conat
multiplication:

𝑚 ∗ 𝑛 = 0 if 𝑚 = 0 or 𝑛 = 0
This gives us two clauses of the definition of mul. In the remaining clause 𝑚 and 𝑛 are both
successors. If you use the same strategy as in lab 2, task 5 you will discover that the definition is
not total. You can test this by evaluating infinity * infinity. Nevertheless, this is pretty
close to the right idea.

You will need to use some basic facts about algebra to rewrite this clause so that the recursive call
to mul occurs within the scope the Conat constructor Succ. Don’t worry if it’s not an immediate
subexpression: even though this is the syntactic condition that Idris uses to recognize totality, it is
stronger than necessary. In fact, it suffices for the recursive call to occur within a total expression
that is guarded by the constructor.

If you figure it out then you should be able to evaluate expressions like:

Lab6> uncoN (infinity * 0)
0
Lab6> uncoN (0 * infinity)
0
Lab6> uncoN (3 * 4)
12
Lab6> infinity * 2
Succ (Delay (add (mul (Succ (Delay infinity)) (Succ (Delay (coN 1))))

(Succ (Delay (coN 0)))))
Lab6> infinity * infinity
Succ (Delay (add (mul (Succ (Delay infinity)) (Succ (Delay

infinity))) (Succ (Delay infinity))))

where the expressions that you get for multiplying a successor by infinity will depend on the details
of your definition, but should in any case be infinite (so applying uncoN to them will hang your
interpreter).

3


