
Lab 8

Functional Programming (ITI0212)

2023-03-24

This week we are learning about algebraic interfaces. These are interfaces whose implementations
are expected to satisfy certain equations. For example, we expect the method (==) : Eq a
=> a -> a -> Bool to be an equivalence relation (i.e., reflexive, symmetric, and transitive).

We met two new interfaces on types. A semigroup is a type a with an associative combining op-
eration (<+>) : Semigroup a => a -> a -> a. If this combining operation has a neutral
element then the semigroup is a monoid. Monoids are useful because they let us combine any finite
sequence of things into a single thing.

We also met three new interfaces on type constructors. A functor is a type constructor t that allows
us to map a function over it using the method map : Functor t => (a -> b) -> t a ->
t b. The functor laws say that mapping must respect the composition structure of functions. A
functor is applicative if it has methods pure : Applicative t => a -> t a and (<*>) :
Applicative t => t (a -> b) -> t a -> t b that satisfy sensible laws. A monad is an
applicative functor with the interdefinable methods (>>=) : Monad t => t a -> (a ->
t b) -> t b and join : Monad t => t (t a) -> t a that behave reasonably. Because
do-notation is syntactic sugar for (>>=), we can use it not just for IO, but for any monad.

Task 1
Write down some properties that you expect implementations of the Ord interface to satisfy.

Task 2
Confirm for yourself that the exclusive-or operation (see lab 2, task 1) is associative. Then write
a semigroup implementation for the booleans, where the combining operation is exclusive-or.
implementation Semigroup Bool where

Extend this to a monoid implementation.
implementation Monoid Bool where

Task 3
Write a semigroup implementation for the type of endomorphisms on an arbitrary type, where the
combining operation is function composition.
implementation Semigroup (a -> a) where

Extend this to a monoid implementation.
implementation Monoid (a -> a) where

so that, for example:
Lab8> (* 2) <+> (+ 1) $ 3
7
Lab8> (+ 1) <+> neutral <+> (* 2) $ 3
8

1

Task 4
Write a function that combines a monoid element with itself a given number of times:
multiply : Monoid a => Nat -> a -> a

For example:
Lab8> multiply 3 ”hello”
”hellohellohello”
Lab8> multiply 3 [1, 2]
[1, 2, 1, 2, 1, 2]
Lab8> multiply 3 True
True
Lab8> multiply 4 True
False
Lab8> multiply 3 (* 2) 5
40

Task 5
Use pattern-matching and structural recursion to write the following function that returns Just
a list of things just in case all of the argument list elements are Just things.
consolidate : List (Maybe a) -> Maybe (List a)

For example:
Lab8> consolidate [Just 1, Just 2, Just 3]
Just [1, 2, 3]
Lab8> consolidate [Just 1, Nothing, Just 3]
Nothing
Lab8> consolidate []
Just []

Task 6
Now analyze the definition that you wrote in task 5 and try to rewrite it as consolidate’
using the fact that Maybe is a Functor. This should allow you to avoid any case analysis in
the recursive clause (the base-case clauses will remain unchanged). If you need a hint, refer to
Lecture8.update’.

Task 7
Recall that in lecture 8 we wrote the arity 2 mapping function for applicative functor types:
map2 : Applicative t => (a -> b -> c) -> t a -> t b -> t c

Write the arity 1 mapping function for applicative functor types:
map1 : Applicative t => (a -> b) -> t a -> t b

Your definition of map1 f x should be an expression involving only f, x, pure, and <*>.

Optional challenge: Write map0 and map3, and try to identify the general pattern to map𝑛.

Task 8
Recall that List is a Monad and therefore implements the join method. Define this function
yourself as:
join_list : List (List a) -> List a

so that join_list xss behaves like join xss for any xss : List (List a).

2

