Lab 15

Functional Programming (IT10212)

2023-05-12

This week we are learning about decidability and automation in Idris programming.

A decision procedure for a predicate is an algorithm that for each possible argument either produces
a proof that the predicate holds or else a refutation proving that it does not. In Idris the type
constructor for decidability is called Dec with constructors Yes and No. Additionally, there
is an interface for types with decidable equality called DecEq in the standard library module
Decidable.Equality.

A constraint argument (also called an auto-implicit argument) is an implicit argument used to
ensure that some validity condition is satisfied. It is written using the double-shafted arrow =>
and is intended to be found by Idris’s expression search mechanism, which is the same tool that
is invoked for expression search by the editor integration. By default, expression search will try
using context variables, constructors, function literals, recursion, and interface implementations in
order to find a term of the desired type. You can augment this list by specifying additional terms
for it to try using the %hint directive.

The first few tasks will illustrate why constraint arguments are useful and guide you through the
process of using them.

Task 1
Suppose that we are hired by a bank to write the software for withdrawing money from an automat.
As part of this program we need to subtract the amount withdrawn from the customer’s bank
balance.

Write a subtraction function to perform this task:

subtract_uf : Nat -> Nat -> Nat

Task 2

What happens if a customer tries to withdraw more money than they have? We could change the
type to allow a negative balance, but if the bank doesn’t trust the customer it may not want to
let them withdraw more money than they have in their account. Another option is to use Maybe
to only allow a withdrawal if it does not cause an underflow.

Rewrite the subtraction function using a Maybe type so that only valid withdrawals are allowed:

subtract_maybe : Nat -> Nat -> Maybe Nat

Task 3

This is certainly a valid solution. But it means that the rest of our banking program will have
to use case or map to deal with our Maybe subtraction. Another option is to use Fin in the
argument instead of Maybe in the result.

Rewrite the subtraction function using a Fin type so that only valid withdrawals are allowed:

subtract_fin : (m : Nat) -> (n : Fin ?what) -> Nat



Task 4

Again, this is a perfectly valid solution, but now we must deal with Fin types, which is less
convenient than Nat. We could do our subtraction using two ordinary Nats, provided that we could
prove that the second one was less than or equal to the first. We can do this using Data.Nat.LTE.

Rewrite the subtraction function using LTE so that only valid withdrawals are allowed:

subtract_lte : (m : Nat) -> (n : Nat) -> (inbounds : n LTE' m) -> Nat

Task 5
It is annoying to have to have to provide a proof of n < m every time we want to do a subtraction
m — n. We can ask Idris to try to find this proof for us using its search mechanism.

Rewrite the subtraction function using a constraint argument to ensure only valid withdrawals are
allowed:

subtract_cst : (m : Nat) -> (n : Nat) -> (inbounds : n "LTE® m) => Nat

For example:

Lab15> 2 “subtract_cst® 0

2

Lab15> 2 ‘subtract_cst® 1

1

Lab15> 2 ‘subtract_cst® 2

(0]

Lab15> 2 ‘“subtract_cst® 3

Error: Can't find an implementation for LTE 3 2.

Hint: There are (at least) two ways to write this function. One involves bringing the constraint
argument into scope by explicitly binding it. Another involves writing and %hinting a lemma to
prove that the constraint is satisfied.

Task 6
This less than or equal to predicate looks pretty decidable.

Write a decision procedure for LTE:

decide_lte : (n , m : Nat) -> Dec (n "LTE' m)

Task 7
Show that if types a and b each have decidable equality then so does the type Pair a b:

implementation DecEq a => DecEq b => DecEq (Pair a b) where

Task 8 (optional challenge)

We learned that in intuitionistic logic the law of the excluded middle, p “0xr* Not p, is not prov-
able. But in homework 4 you showed that its double negation, Not (Not (p “Or® Not p)),
is provable. This implies that Not (p “O0r® Not p) is not provable either, because otherwise
we would have a contradiction. Since we can prove neither p *0r® Not p nor Not (p ‘Or°
Not p) we can’t prove that p “0r® Not p is decidable. However, we can prove that it is not
not decidable!

Prove that it is not the case that the law of the excluded middle is not decidable:
nndec_lem : Not (Not (Dec (p "Or' Not p)))

Hint: this proof is very similar to the one the one for not_not_lem in homework 4. It is not long
or hard, but it is rather counterintuitive.



