
Lab 10

Functional Programming (ITI0212)

2020.04.22

This week we learned about how to interpret a proposition as a type, and a proof of a
proposition as a term of the corresponding type.

To complete this lab you will need the modules Even and LEQ that we developed inter-
actively during lecture. Recall that in order to access their contents in your lab file, you
will need to import the respective files, even.idr and leq.idr, located on the course
web site beside this document.

Exponentiating an Even Number
In lecture this week we proved that the sum and product of two even numbers is even.
In this section we consider exponentiation. Without thinking too hard, we might believe
that for any 𝑛, if 𝑚 is even then the exponential 𝑚𝑛 is even too. This is almost true,
except in the case that 𝑛 is 0.

In order to prove that a positive power of an even number is even, we will first define a
predicate for positive numbers as a Nat-indexed type:

data Positive : Nat -> Type where
One_positive : Positive (S Z)
S_positive : Positive n -> Positive (S n)

which we can think of as follows:
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The type Positive 0 is empty, the type Positive 1 is a singleton containing One_positive,
and every type Positive (S (S n)) is a singleton containing the value of the function
S_positive applied to the sole inhabitant of Positive (S n).

We can use this type together with Even to express the proposition that we wish to prove:

{m : Nat} -> Even m -> {n : Nat} -> Positive n -> Even (power m n)

where power is the exponentiation function on natural numbers from the standard library.
This should go smoothly, except for one wrinkle.
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Task 1
Because we don’t yet know how to tell Idris about equality, we will need the following
easy lemma, which you should prove:

even_times_one : Even n -> Even (n * 1)

We are now nearly ready to prove that a positive power of an even number is even. Often
the easiest way to prove a property about a recursively defined object is to try to follow
its recursive structure in the structure of your proof.

Task 2
Examine the recursive structure of the exponentiation function on natural numbers with
:printdef power. On which argument(s) is it recursive?

Task 3
Write a proof of the theorem that a positive power of an even number is even by following
the recursive structure of the exponentiation function.

pow_even_pos : Even m -> Positive n -> Even (power m n)

Monotonicity of Addition
In lecture we proved that LEQ is a preorder relation on the natural numbers. Now we will
prove that the addition operation is monotonic with respect to this order.

Task 4
As a warm-up, prove the following facts about adding zero on the right or on the left:

zero_plus_right : LEQ (m + 0) (m + n)

zero_plus_left : LEQ (0 + n) (m + n)

As you examine the intermediate proof states, recall that addition of natural numbers
is defined recursively on the first argument (:printdef plus), so that as far as Idris is
concerned 0 + n and n are interchangeable, and likewise, S m + n and S (m + n) are
interchangeable.

Task 5
Now prove that addition is monotonic in its right and left arguments:

plus_mono_right : LEQ n0 n1 -> LEQ (m + n0 ) (m + n1 )

plus_mono_left : LEQ m0 m1 -> LEQ (m0 + n) (m1 + n)

Task 6
Finally, prove that addition is monotonic in both arguments simultaneously:

plus_mono : LEQ m0 m1 -> LEQ n0 n1 -> LEQ (m0 + n0 ) (m1 + n1 )

Hint: this should be a one-liner using task 5 and the preorder structure on LEQ.
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