
Lab 12

Functional Programming (ITI0212)

2020.05.06

This week we learned about empty types and how to express negation in the propositions-
as-types interpretation. The constructive logic that this interpretation realizes is some-
what different from the Boolean logic with which you’re surely familiar. We also learned
about decidable propositions and predicates, and in particular, about decidable equality
relations. You should import this week’s lecture file to complete the tasks below.

Constructive Logic
The constructive logic realized by the propositions-as-types interpretation has fewer the-
orems than Boolean logic. For example, because it is not required that every proposition
be decidable, we cannot prove the principle of the excluded middle:
excluded_middle : {a : Type} -> a `Or` Not a

Nevertheless, many familiar theorems from Boolean logic remain valid constructively.

Task 1
Convince Idris that the principle of contraposition is valid:
contrapositive : (a -> b) -> Not b -> Not a

Task 2
Convince Idris that the principle of double-negation introduction is valid:
dni : a -> Not $ Not a

Task 3
In general, the converse of double-negation introduction is not constructively provable.
However, an important special case, where a is itself a negation, is provable.

Convince Idris that the principle of triple-negation elimination is valid:
tne : Not $ Not $ Not a -> Not a

Hint: the principle of double-negation introduction will be helpful here.

Task 4
Convince Idris that the following de-Morgan principles are valid:
dm1 : Not a `Or` Not b -> Not (a `And` b)

dm2 : Not a `And` Not b -> Not (a `Or` b)

1



Deciding Vector Equality
Task 5
Convince Idris that two nonempty Vects are equal just in case their heads are equal and
their tails are equal:

cons_equal : {xs , ys : Vect n a} ->
x = y -> xs = ys -> x::xs = y::ys

decons_equal : {xs , ys : Vect n a} ->
x::xs = y::ys -> (x = y) `And` (xs = ys)

Task 6
Convince Idris that two nonempty Vects with different heads or with different tails are
not equal:

heads_differ : {xs , ys : Vect n a} ->
Not (x = y) -> Not (x::xs = y::ys)

tails_differ : {xs , ys : Vect n a} ->
Not (xs = ys) -> Not (x::xs = y::ys)

Task 7
Convince Idris that assuming the element type has decidable equality, if two nonempty
Vects differ then either their head elements differ or else their tail Vects differ:

decons_differ : DecEq a => {xs , ys : Vect n a} ->
Not (x::xs = y::ys) -> Not (x = y) `Or` Not (xs = ys)

Task 8
Use the lemmas that you just proved in order to complete a named implementation of
decidable equality for vectors whose element type itself has decidable equality:

implementation [custom] DecEq a => DecEq (Vect n a) where
decEq xs ys = ?Goal_decEq

2


