
Lab 3

Functional Programming (ITI0212)

2020.02.26

Recall the type of vectors from Data.Vect in the Idris standard library:

data Vect : Nat -> Type -> Type where
Nil : Vect Z t
(::) : t -> Vect n t -> Vect (S n) t

This is an example of a type with both a type parameter (the “t”) and a type index (the
“Nat”). The difference between a parameter and an index is that a parameter must be
treated uniformly (both of the constructors result in a Vect something t), whereas an
index determines a family of types dependent upon – or sorted by – the values of the
indexing type (in this case, Vects are sorted by their lengths, which are Nats).

Matrices
Because types are first-class objects in Idris, we can write functions that act on them. As
an example of this, we saw in lecture how to define a type of matrices:

Matrix : Nat -> Nat -> Type -> Type
Matrix m n t = Vect m (Vect n t)

By this definition, a matrix is a vector of m rows, each of which is a vector of n cells, each
of type t. Because the dimensions of a matrix are encoded in its type, we can guarantee
that certain well-typed matrix operations will not result in a run-time error. If you have
experience working with machine learning libraries in languages with less expressive type
systems, you can appreciate how useful this can be.

Because Vects are inductively defined types, we can exploit their structure when working
with Matrixes; in particular, we can use pattern matching and recursion.

In order to add two matrices of integers, they must have the same dimensions, and the
result of the the addition will also have the same dimensions:

add : {m , n : Nat} ->
Matrix m n Integer -> Matrix m n Integer -> Matrix m n Integer

Task 1
Complete the definition of matrix addition by the following process:

• Add a skeleton definition to the above type signature, where the entire right-hand
side is a hole.

• Case split on both of the two arguments. (How many clauses should there be? How
does Idris know that the other possible constructor combinations cannot occur?)
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• Use automatic term search to complete the first clause. (Why does this succeed?)

• Define a local variable to hold the result of the recursive call – i.e. adding the tails
of the two Vects of Vects.

• Finish the definition by specifying how to add the two head Vects and combining
the sum with the result of the recursive call. (Hint: recall the zipWith function,
discussed in lecture.)

This process of writing a type signature, adding a skeleton definition with a hole, pat-
tern matching on arguments, and recursing on subterms, lies at the heart of type-driven
development.

We have defined a Matrix as a Vect of its rows. However, sometimes we want access to
the columns of a matrix instead of the rows. There are several ways we could accomplish
this, one of which is to define matrix transposition.

Task 2
Use the type-driven development process described above to complete the definition of
matrix transposition with the following type signature:

transposeMatrix : {t : Type} -> {m , n : Nat} ->
Matrix m n t -> Matrix n m t

• In the clause for the empty vector – i.e. a 0-by-𝑛 matrix – the transpose must be
an 𝑛-by-0 matrix, which is a vector containing 𝑛 empty vectors. The replicate
function from the standard library may be helpful here.

• In the clause for a nonempty vector, think about how to transpose all of the rows of
a matrix, assuming that you already know how to transpose all of its rows except for
the first. That assumption corresponds to a recursive function call. The zipWith
function may again be helpful.

Matrix Multiplication
Recall that to compute the (𝑖, 𝑗)-th entry of a matrix multiplication, we take the 𝑖-th row
of the first matrix and the 𝑗-th column of the second matrix (which necessarily have the
same length), multiply them pointwise, and sum the result:

(𝐴 × 𝐵)𝑖,𝑗 = ∑
𝑘

𝐴𝑖,𝑘𝐵𝑘,𝑗

Task 3
Either copy from your lecture notes, or write on your own, the function sumofproducts
that computes the sum of the pointwise product of two vectors of the same size. Here, you
have a choice of either using the inductive structure of Vects directly to write a recursive
definition, or using the functions sum and zipWith in order to write a shorter definition.

sumofproducts : {n : Nat} ->
Vect n Integer -> Vect n Integer -> Integer

Now we have all the pieces that we need in order to define matrix multiplication. To
perform the matrix multiplication 𝐴 × 𝐵, our strategy will be to use recursion on 𝐴 only.
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Task 4
Complete the definition of the matrix multiplication function with the following type
signature:

mult : {m : Nat} ->
{n : Nat} -> Matrix m n Integer ->
{p : Nat} -> Matrix n p Integer ->
Matrix m p Integer

Use the following procedure:

• Add a skeleton definition, where the entire right-hand side is a hole.

• Case split on the first argument only.

• Complete the first clause using term search. (Why does this succeed?)

• In the second clause, define a local variable rest_rows to hold the result of the
recursive call (using the tail of the first argument, and the entire second argument
unchanged). This will be the matrix containing all of the rows of the product 𝐴×𝐵,
except for the first one.

• We can obtain the 𝑗-th entry of the first row of the matrix 𝐴 × 𝐵 by applying
sumofproducts to the Vect that is the first row of matrix 𝐴 and the Vect that is
the 𝑗-th column of matrix 𝐵. Because our matrices are encoded as vectors of rows,
we do not have direct access to the columns, but we can obtain them by matrix
transposition. Use these facts to define a local variable first_row whose value is
the Vect that is the first row of the matrix 𝐴 × 𝐵.

• Write an expression to combine the two local variables first_row and rest_rows
into the matrix consisting of all the rows of the matrix 𝐴 × 𝐵.

Elementary Row Operations
An elementary row operation on a matrix is one of the following:

row multiplication: the replacement of a matrix row with the row which is the point-
wise product of a nonzero constant and the previous value,

row addition: the replacement of a matrix row with the row which is the pointwise sum
of that row and another row of the same matrix,

row swapping: the transposition of two rows of a matrix.

If you are unfamiliar with elementary row operations, you can read more about them
here:

https://en.wikipedia.org/wiki/Elementary_matrix#Elementary_row_operations

In this lab we will implement the first of these operations, row multiplication. If you have
time and interest, please consider working on the other two elementary row operations as
well.

The function that computes elementary row multiplication should take as explicit argu-
ments a row index, a factor by which to multiply each element of that row, and a matrix.
It should return the matrix in which each element of the given row has been multiplied
by the given factor. (For the purposes of this exercise, we do not require the factor to be
nonzero.)
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In order to guarantee that the row index is valid, we can use the Fin type from Data.Fin
in the standard library that was presented in lecture this week:

data Fin : Nat -> Type where
FZ : Fin (S n)
FS : Fin n -> Fin (S n)

Notice that the type Fin n has exactly n elements in it; in particular, the type Fin Z is
empty. Like Nat, the types Fin n support the syntactic sugar of Arabic numerals on the
right hand side of a definition.

There are a few different ways to implement elementary row multiplication in a provably
total manner. Here, we will explore one such.

Task 5

• Enter the following type signature for the elementary row multiplication function
into Idris and add a skeleton definition with a hole:

elem_mult : {m , n : Nat} -> Fin m -> Integer ->
Matrix m n Integer -> Matrix m n Integer

elem_mult index factor matrix = ?Goal

• Notice that the second argument (called “factor” above) is not of an inductive
type, so we can’t case split on it. (And anyway, it wouldn’t make sense to do so
because the function doesn’t behave differently based on the particular factor that
we multiply by.) Try case splitting on the remaining two arguments. What does
Idris discover about some of the cases? Why does this make sense? (Hint: think
about the implicit argument m.)

Important note: if you case split on the matirix before splitting on the index, you
may encounter a bug in Idris where after a case split it can’t tell whether “[]” refers
to the empty vector (Data.Vect.Nil) or to the empty list (Prelude.List.Nil).
The type of the function tells us that the argument matrix is a Vect of Vects of
Integers, so it must be the former. You can work around this bug for now by
replacing the “[]” in the pattern with “Data.Vect.Nil”.

• Finish writing the remaining cases to define the elem_mult function.
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