
Lab 8

Functional Programming (ITI0212)

2020.04.08

This week we learned about how we can use indexed types to make data structures that
know their own shape. We saw how the shape of a List is its length, and thus how a
Vect is a list that knows its shape.

Then we reviewed the type of (node-labeled) binary trees, and saw how we could cre-
ate a shapely version of these as well. We saw how using shapely data structures can
make programming easier and safer by turning programming errors into statically- and
automatically-checked type errors.

Imports and Namespaces
For this week’s lab exercises you will need access to the files shapeless_tree.idr and
shapely_tree.idr that were developed during the lecture. You should find them on the
course web page next to the current document.

In order to access the contents of those files from your lab file, you will need to place
them together in the same directory and include the following lines at the beginning of
your lab file:

import shapeless_tree
import shapely_tree

These import statements tell Idris to search its default path (which always includes the
current directory) for Idris files with the given names. If the search is successful then the
types and functions that are exported by these files become available for use within the
current file when qualified by their respective module names.

For example, the file shapeless_tree.idr defines a module called ShapelessTree, which
in turn contains the type Tree. You can refer to this type within your own Idris program
as ShapelessTree.Tree. However, if the thing you want to refer to is unambiguous,
either because it is the unique thing in scope with the given name, or because it can be
disambiguated by its type from other things in scope with the same name, then you may
omit the module namespace prefix.

Thus ShapelessTree.Tree can be disambiguated from ShapelyTree.Tree if you give ei-
ther at least one argument whose type Idris can infer. This is because ShapelessTree.Tree
takes only one argument, a Type parameter, whereas ShapelyTree.Tree takes two ar-
guments, first a TreeShape index and next a Type parameter. Because a term of type
TreeShape is not a Type, and vise-versa, Idris can figure out which of the two Trees
was intended. For example, “Tree Nat” must mean ShapelessTree.Tree Nat while
“Tree LeafShape” must mean ShapelyTree.Tree LeafShape.

1



Warming Up
To begin, we’ll write a simple recursive function on trees of both the shapeless and shapely
variety.

Task 1
Write the “zip-with” function for shapeless trees:

zipwith_shapeless_tree : (a -> b -> c) ->
Tree a -> Tree b -> Tree c

This function should return the (shapeless) tree resulting from applying the given binary
function to the pair of elements in the corresponding positions of its two argument trees.
As with zip_tree, it should silently truncate the result tree to the intersection of the
shapes of the two arguments.

For example:

zipwith_shapeless_tree (+) 1

2

4 5

3

6

7

9

8

10

= 7

9

14

11

Task 2
Now write the same “zip-with” function for shapely trees:

zipwith_shapely_tree : (a -> b -> c) ->
Tree shape a -> Tree shape b -> Tree shape c

Note that, like zipWith for Vects, the type enforces the invariant that the two input trees
and the output tree all have the same shape.

When developing this function interactively, pay attention to the clauses generated by
the case-split and try using term search to solve the sub-goals.

Task 3
Recall the shapely tree zipping function presented in lecture:

zip_tree : Tree shape a -> Tree shape b -> Tree shape (Pair a b)

Write its inverse function,

unzip_tree : Tree shape (Pair a b) -> Pair (Tree shape a) (Tree shape b)

Shaping Up
Recall from lecture that it is easy to make a list forget its shape; i.e., to turn a Vect into
a List containing the same elements in the same order. This is true for trees as well.

Task 4
Write the function forget_shape that turns a ShapelyTree.Tree into the ShapelessTree.Tree
containing the same elements in the same positions:

forget_shape : ShapelyTree.Tree shape type -> ShapelessTree.Tree type

2



As in the case of lists, recovering the shape of a shapeless tree requires a little more work
because we need to compute the shape in order to specify the type.

Task 5
Write the function learn_shape that turns a ShapelessTree.Tree into the ShapelyTree.Tree
containing the same elements in the same positions:

learn_shape :
(tree : ShapelessTree.Tree type) -> ShapelyTree.Tree ?shape type

Before writing this function, you should first figure out how to solve the goal ?shape in
the signature. The best way to do this is to write an auxiliary function that computes
the shape of a shapeless tree.

Wrapping Up
Now that we have some experience with trees and their shapes, let’s try a couple more
shapely exercises.

Task 6
Write a function that reflects a shapely tree (this is the shapely version of a function that
you wrote already in lab 6).

reflect_tree : Tree shape type -> Tree ?reflected_shape type

You will again need to compute the shape in order to specify the type. However, once
you have written the shape-computing function, term search should be able to solve the
rest of the exercise for you.

Your function should behave like this:

reflect_tree 1

2

4 5

3

6

= 1

2

45

3

6

Task 7
Write a function that takes a tree shape and a shapely tree and “prunes” the tree to the
desired shape:

prune_tree : (template_shape : TreeShape) -> Tree tree_shape type ->
Tree ?pruned_shape type

Your function should behave like this:

prune_tree □

□

□ □

□

6

7

9

8

10

= 6

7

9

8

Of course, you’ll need to be able to compute the shape of a pruned tree in order to express
the type of the result.

3


