
Lab 9

Functional Programming (ITI0212)

2020.04.15

This week we learned about Idris’s system for managing name overloading. An interface
is a collection of named type signatures, called “methods”, involving a collection of typed
bound variables. The interface represents a constraint on these variables. An implemen-
tation of an interface, called an “instance”, provides definitions of a basis for the methods,
and represents a solution to the constraint represented by the interface.

Interfaces can themselves depend on other interfaces, and implementations can be either
named instances or unnamed default instances. There can be at most one default instance
of a given interface for each assignment of its bound variables.

Multisets
A multiset (or “bag”) is a data structure that is like a list, except that the order of the
elements is irrelevant. There are several possible ways to represent multisets in Idris, but
for our present purposes the easiest one will be to simply encode them as Lists. Two
multisets, when encoded as lists, are equal just in case each is a permutation of the other.
A multiset xs is contained in a multiset ys just in case each element that occurs with
multiplicity 𝑚 in xs occurs with multiplicity 𝑛 in ys with 𝑚 ≤ 𝑛.

A preorder is reflexive and transitive binary relation on a collection of objects. Recall
that a binary relation − ⊑ − on a collection of objects 𝐴 is:

reflexive if for each 𝑥 ∈ 𝐴, we have that 𝑥 ⊑ 𝑥, and

transitive if for each 𝑥, 𝑦, 𝑧 ∈ 𝐴, we have that if 𝑥 ⊑ 𝑦 and 𝑦 ⊑ 𝑧 then 𝑥 ⊑ 𝑧.

The following interface is meant to specify a preorder structure on a type:
interface Preorder (a : Type) where

leq : a -> a -> Bool

The method leq is intended to represent the relation − ⊑ −; i.e., we should have 𝑥 ⊑ 𝑦
just in case leq x y is True.

Task 1
First type the Preorder interface into your lab file. Next define a Preorder instance for
Lists whose element type is an instance of Eq in such a way that leq xs ys is True just
in case xs ⊑ ys when xs and ys are interpreted as multisets and − ⊑ − is interpreted as
multiset containment.

In other words, complete the definition of the leq method in:
implementation Eq a => Preorder (List a) where

leq xs ys = ?MultisetPreorder

1



This function should behave as follows:

leq [] [5] = True
leq [2 , 1] [1 , 2] = True
leq [1 , 1 , 2] [1 , 2 , 2] = False

Hint: the standard library functions Prelude.List.elem and Prelude.List.delete may
be useful.

Task 2
Write a named implementation of the Eq interface for Lists that determines multiset
equality; i.e., complete the definition of the (==) method in:

implementation [Multiset] Eq a => Eq (List a) where
xs == ys = ?MultisetEquality

so that [1,2] == [2,1] = False but (==) @{Multiset} [1,2] [2,1] = True 1.

Hint: using task 1, this should be a one-liner.

Applicative Functors
Recall that an applicative functor structure lets us lift functions of arbitrary arity into a
parameterized type constructor.

Task 3
Complete the definition of the function consolidate:

consolidate : List (Maybe a) -> Maybe (List a)

such that

consolidate [Just 1 , Just 2 , Just 3] = Just [1 , 2 , 3]
consolidate [Just 1 , Nothing , Just 3] = Nothing

After completing the type-directed recursive definition, rewrite your definition using the
Maybe instances of the Applicative methods (pure and (<*>)) and without performing
any case analysis on a term of Maybe type. The terms Nothing and Just should not occur
anywhere in your definition.

Task 4
Complete the definition of the function applicify, which takes any binary operator and
extends it to any applicative type constructor:

applicify : {t : Type -> Type} -> Applicative t =>
(op : a -> a -> a) -> t a -> t a -> t a

Using your definition, you can easily define operators such as:

infixl 7 +?
(+?) : Num a => Maybe a -> Maybe a -> Maybe a
(+?) = applicify (+)

1I concede that this is horrible concrete syntax.

2



infixl 7 +*
(+*) : Num a => Vect n a -> Vect n a -> Vect n a
(+*) = applicify (+)

that behave as follows:

Just 3 +? Just 4 +? Just 5 = Just 12
Just 3 +? Nothing +? Just 5 = Nothing
[1,2,3] +* [4,5,6] +* [7,8,9] = [12,15,18]

What Does it Do, and Why?
Task 5
Write down the type signatures for the List and Vect n instances of the methods in the
Functor, Applicative, and Monad interfaces (map, pure, (<*>), and join).

Task 6
Use the Idris REPL to explore the behavior of each of these method instances (the function
the will be helpful here). Write a brief English description of the behavior of each of the
8 functions just described. In the cases where the behavior of the List and Vect n
instances of a method differ, explain why these differences are required by the respective
types.

3


