
ITI0212 Functional
programming

Lecture 2
Pawel Sobocinski

Evaluation stategies
• When do arguments to functions get evaluated?

• function_1(a+b, function_2(c))

• Eager (aka strict, aka call-by-value)

• most languages

• arguments get evaluated before executing the function body

• Lazy (aka call-by-name)

• Haskell

• arguments get evaluated only when actually used

• Idris has eager evaluation

Question

• Can you think of a piece of code that behaves differently
with call-by-name and call-by-value?

Lists
• A list can be any size

• Every element must be the same type

Basic operations
Concatenation

Cons

Length

What can we say about any list?

• It is either empty

• Or it contains at least one element, it is of the form x :: XS

Inductive data types
• List is an example of something called an inductive data

type

• Every value of an inductive data type can be constructed
from some constructors

• Every list can be constructed from [] and x :: xs

Pattern matching

• Functions that take as argument an inductive data type
benefit from pattern matching

• Idris has some cool features that help us write such
functions

• this is our first example of type driven development

Writing a length function 1

• Take a list and output its length

Ctrl-Alt-A — add definition -

 adds a skeleton definition for the name under the cursor

Idris allows you to replace parts of your programs with holes to be filled later

Writing a length function 2
Ctrl-Alt-T — type-check name —

 — displays the type of the name under the cursor

Writing a length function 3
Ctrl-Alt-C — case split -

 Splits a definition into pattern-matching clauses for the

 name under the cursor

Writing a length function 3

Syntactic sugar

• Syntactic sugar - features in syntax that are convenient but do not add expressivity

• [] is syntactic sugar for Nil

• [1..5] expands to [1,2,3,4,5]

• [1,3..7] expands to [1,3,5,7]

• [5,4..1] expands to [5,4,3,2,1]

Natural numbers

• Nat is an inductive data type

Defining addition
Ctrl-Alt-A

Ctrl-Alt-C

Ctrl-Alt-T

Ctrl-Alt-S - search -searches for a
term that has the type of the hole
under the cursor

Defining addition 2
Ctrl-Alt-S

Unfortunately, Idris is not magic…

Defining multiplication

Repeat
• Take something and create a list containing k copies of it

Generic types

• here the variable stands for a type

• In Idris, variables in types can also stand for values, as we
will see soon

lowercase name in type declaration = variable

Stutter
• Take a List and a Nat k and output a list where every

element appears k times

Tuples
• A tuple is a fixed size collection where each element can

have a different type

Basic operations on tuples

• fst, snd

Zip

• Write a function

• zip_it: List ty -> List ty’ -> List (ty, ty’)

• Takes two lists and “zips” them into one

Records

Operations on records

