TECH

1110212 Functional
programming
Lecture 3

Pawel Sobocinski



Homework assignment -
Instructions



Higher order functions

e One of the Killer features of functional programming is
first-class functions

e Since functions are values, they can be passed as
arguments

e Functions that take functions as arguments are called
higher-order functions



map . Functor f

Idris> :doc map
Prelude.Functor.map : Functor f => (func : a -=>b) -=>f a ->f b
a

a
Apply a function across everything of type in a pa rameterlsed type

The function is: Total & public export



Example - add 1 to every
element of a List

addone : List Int —> List Int
addone xs = map (\x => x + 1) Xxs

*Addone> addone [1 2 03]
[2, 3, 4] : Li




Example - prefix every
string In a list with “not ”

addnot : List String —> List String
addnot xs = map (\x => "not " ++ X) Xs

x*Addnot> addnot ["good", "decent", "honourable" ]
["not good", "not decent", "not honourable"] :




Idris> :t filter
filter : (a -> Bool) -> List a -> List a

Idris> :doc filter

Prelude.List.filter : (a -> Bool) -> List a -> List a
filter, applied to a predicate and a list, returns the list of those elements that satisfy the
predicate; e.g.,

> filter (\ARG => ARG < 3) [0, 1, 2, 3, 4]
[0, 1, 2]

The function is: Total & public export



Example - take all non-
negative elements from a list

nonnegative : List Int —> List Int
nonnegative xs = filter (>=0) xs

*Nonnegative> nonnegative [-2,0,2,-3,4]
[0, 2, 4] : List Int



Example - take all strings of
length equal to 3 from a list

Threeletterstrings> threeletterstrings ["I", "am", "the", "walrus"]
[lvthen:l :

threeletterstrings : List String —> List String
threeletterstrings xs = filter (\x => (length x) == 3) xs




Example - quicksort

quicksort : (Ord ty) => List ty —> List ty
quicksort = []

quicksort (x :: xs) = quicksort (filter (<=x) xs) ++ [x] ++ quicksort (filter (>x) xs)

*Quicksort> quicksort [21,5,63,436,5,-1]

[-1, 5, 5, 21, 63, 436] :



Other

e Certain higher-order functions called folds are particularly
useful

e foldl

e foldr

e More on this in Chad’s lectures



Structuring code

e let blocks

e where blocks

e modules



let 1n

e | et blocks allow to bind local variables, whose scope is
only visible inside the function body

let x1
X2
in f

something
something_else

e Use to break up complicated function definitions into
more manageable/readable code



Example - more readable
gqulcksort

quicksort : (Ord ty) => List ty —> List ty

quicksort = []

quicksort (x :: xs) = let lessthanorequaltox = quicksort (filter (<=x) xs)
greaterthanx = quicksort (filter (>x) xs)

in lessthanorequaltox ++ [x] ++ greaterthanx



where

e \Where blocks allow one to define local function definitions



Example - take the even nats from a list

takeevens : List Nat —> List Nat
takeevens xs = filter even Xxs
where
even : Nat —> Bool

even Z = lrue
(

even (S k) = not (even k)

xTakeevens> takeevens [0..10]
0, 2, 4, 6, 8, 10]




modules

Modules allow the logical division of a larger program into
several source files, each with its own purpose

A module exports the definition of one or several functions

A module can be imported and its functions used

A module declaration means that that a namespace for the
definitions is created

e sometimes this means that fully qualified function
names must be used



Example - average (listing 2.7 in Brady)

module Average

export
average : String —> Double
average str = let numWords = wordCount str
totalLength = sum (allLengths (words str))

cast totalLength / cast numWords
where

wordCount : String —> Nat
wordCount str = length (words str)

allLengths : List String —> List Nat
allLengths strs = map length strs

*Average> average "The quick fox jumped over the lazy dog"
3.875




Importing

modu le Mailn

import Average

main : IO ()
main = repl "Enter a string:

stringStats
where stringStats : String —> String

stringStats x = "Average word length:

++ show (average x) ++ "\n"



Functions used




