TECH

1110212 Functional
programming
Lecture 4

Pawel Sobocinski

1st Homework Assignment
submission instructions

* No lab tomorrow
e By midday 12pm tomorrow (19/02/2020) send

e Your solutions Solutions.idr + digitally signed
statement statement. txt

e | *™your name™** certify that the solutions submitted
are my own

e 10 pawel@cs.1o0c.ee

Idris> :doc Either
Data type Prelude.Either.Either :
A sum type

The function i1s: public export
Constructors:
Left : (1 : a) -> Either a b
One possibility of the sum, conventionally used to represent errors

The function is: public export
Right : (r : b) -=> Either a b
The other possibility, conventionally used to represent success

The function is: public export

Idris> :t Left
Left : a -=> Either a b
Idris> :t Right
Right : b -> Either a b

Simple example

show : Either Bool Int —> String
show (Left 1) = "Bool: " ++ show 1
show (Right r) = "Int: " ++ show r

xEither> show (Left True)
"Bool: True" :

xEither> show (Right 4)
"Int: 4"

Exercises

e pair: (¢ > a) > (¢ -=> b) > (c -> (a,b))

e copair : (a > c) -> (b -> ¢) -> (Either a b -> ¢)

Data type Prelude.Maybe.Maybe : (a : Type) -> Type
An optional value. This can be used to represent the possibility of failure, where a function

may return a value, or not.

The function is: public export
Constructors:
Nothing : Maybe a
No value stored

The function is: public export
Just : (x : a) -> Maybe a

A value of type a is stored

The function is: public export

Simple example

head : List ty —> Maybe ty
head [] = Nothing
head (x :: Xxs) = Just X

x*Head> Main.head ["Hello", "world"]
Just "Hello" : |

*Head> Main.head (the (Llst String) [1)

Vectors - more premse lists

Data type Data.Vect.Vect : (len : Nat) -> (elem : Type) -> T\
Vectors: Generic lists with explicit length in the type
Arguments:

len : Nat -- the length of the list

elem : Type -- the type of elements

The function is: public export
Constructors:
Nil : Vect 0 elem
Empty vector

The function is: public export
(::) : (x : elem) -> (xs : Vect len elem) -> Vect (S len) e
A non-empty vector of length S len, consisting of he ad element and the rest of the list, of
length len.
infixr 7

import Data.Vect

fourints : Vect 4 Int
fourints = [0,1,2, 3]

sixints : Vect 6 Int
sixints = [4,5,6,7,8,9]

tenints : Vect 10 Int
tenints fourints ++ sixints

Example: refine
allLengths

allLengths : List String —> List Nat

allLengths strs = map length strs

Exercise

e Define add: Vect m Int -> Vect m Int -> Vect m Int

e Take alook at Prelude function zipWith

Explicit vs implicit
arguments

e reverse : (elem: Type) -> List elem -> List elem

* elemis explicit: it needs to be provided when reverse is
called

e reverse: {elem: Type} -> List elem -> List elem
e elem is implicit and bound
e reverse: List elem -> List elem

« elem is implicit and unbound, internally rewritten to

e reverse: {elem : _} -> List elem -> List elem

Sorting a vector using
Insertion sort

import Data.Vect

inssort : Vect n ty —> Vect n ty

Matrix functions

e A matrix is a rectangular array of numbers arranged in
rows and columns

e e.g.a 3x4 matrix has 3 rows and 4 columns
e matrices of equal sizes can be added

e matrices of A and B can be multiplied if the number of
columns of A is the same as the number of rows of B

