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This talk is based on three preprints.

1 General facts on the Scott Adjunction, ArXiv:2009.14023.
2 Towards Higher Topology, ArXiv:2009.14145.
3 Formal Model Theory & Higher Topology, ArXiv:2010.00319.

Sketches of an elephant
These cover three different aspects of the same story.

1 Category Theory;

2 (Higher) Topology;

3 Logic.

We will start our tour from the crispiest one: (Higher) Topology.
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The topological picture

Loc

Top Posω

pt
ptO

S

ST

Top is the category of topological spaces and continuous mappings
between them.

Posω is the category of posets with directed suprema and functions
preserving directed suprema.
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The topological picture

Loc

Top Posω

pt
ptO

S

ST

Loc is the category of Locales. It is defined to be the opposite category
of frames, where objects are frames and morphisms are morphisms
of frames. A frame is a poset with infinitary joins (

∨
) and finite

meets (∧), verifying the infinitary distributivity rule,

(
∨

xi ) ∧ y =
∨

(xi ∧ y)

The poset of open sets O(X ) of a topological space X is the
archetypal example of a locale.
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The topological picture

Loc

Top Posω

pt
ptO

S

ST

The diagram is relating three different approaches to geometry.

Top is the classical approach.

Loc is the pointfree/constructive approach.

Posω was approached from a geometric perspective by Scott, motivated
by domain theory and λ-calculus.
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The topological picture

Loc

Top Posω

pt
ptO

S

ST

pt maps in both cases a locale to its set of formal points. A formal
point of a locale L is a morphism of locales T→ L. This set
admits a topology, but also a partial order.

S maps a poset with directed colimits to the frame Posω(P,T).
ST equips a poset P with its Scott topology, which can be essentially

identified with the frame above.
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The topological picture

Loc

Top Posω

pt
ptO

S

ST

1 O a pt, is sometimes called Isbell adjunction.
2 S a pt, might be called Scott adjunction.
3 The solid diagram above commutes.

4 This is all very classical. What did I do? Categorify!
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The project of Categorification

Topoi

LBIon Accω

pt
ptO

S

ST

1 Topoi is the 2-category of Grothendieck topoi. A Grothendieck
topos is precisely a cocomplete category with lex colimits, an
analog of the infinitary distributivity rule, and a generating
set.The latter is just a smallness assumption which is secretly
hidden and even stronger in locales, indeed a locale is a set.
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The project of Categorification

Topoi

LBIon Accω

pt
ptO

S

ST

1 Accω is the 2-category of accessible categories with directed
colimits and functors preserving them. An accessible category
with directed colimits is a category with directed colimits
(notice the analogy with directed suprema) and a (suitable)
generating set. As in the case of topoi, the request of a (nice
enough) generating set makes constructions more tractable.
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Ionads
The 2-category of Ionads was introduced by Garner. A ionad
X = (X , Int) is a set X together with a comonad Int : SetX → SetX

preserving finite limits. While topoi are the categorification of locales,
Ionads are the categorification of the notion of topological space, to be
more precise, Int categorifies the interior operator of a topological space.

Thm. (Garner)

The category of coalgebras for a ionad is indicated with O(X ) and is a
cocomplete elementary topos. A ionad is bounded if O(X ) is a
Grothendieck topos. Thus one should look at the functor

O : BIon→ Topoi,

as the categorification of the functor that associates to a space its
frame of open sets.
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Topoi

BIon Accω

ptO

1 The functor pt was also known to the literature. For every topos E
one can define its category of points to be Topoi(Set, E), and it is
a classical result that this category is accessible and has directed
colimits.

2 My task was to provide all the dashed arrows in this diagram, to
show that they form adjunctions and to describe their properties.
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The Scott Adjunction (Henry, DL)
There is an 2-adjunction

S : Accω � Topoi : pt.

1 Accω is the 2-category of accessible categories with directed
colimits, a 1-cell is a functor preserving directed colimits, 2-cells are
invertible natural transformations.

2 Topoi is the 2-category of Groethendieck topoi. A 1-cell is a
geometric morphism and has the direction of the right adjoint.
2-cells are natural transformation between left adjoints.
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The Scott construction
Let A be a 0-cell in Accω. S(A) is defined as the category
Accω(A,Set).

Let f : A → B be a 1-cell in Accω.

A SA

B SB

f
f ∗af∗

Sf = (f ∗ a f∗) is defined as follows: f ∗ is the precomposition functor
f ∗(g) = g ◦ f . This is well defined because f preserve directed colimits.
f ∗ preserve all colimits and thus has a right adjoint, that we indicate
with f∗. Observe that f ∗ preserve finite limits because finite limits
commute with directed colimits in Set.
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Topoi

BIon Accω

ptO
S

1 Unfortunately the definition of Garner does not allow to find a right
adjoint for O.
In order to fix this problem, one needs to stretch Garner’s definition
and introduce large (bounded) Ionads.
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Thm. (DL)
Replacing bounded Ionads with large bounded Ionads, there exists a
right adjoint for O and a Scott topology-construction ST such that
S = O ◦ ST, in complete analogy to the posetal case.

Topoi

LBIon Accω

pt
ptO

S

ST
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The generalized Isbell adjunction (DL)
There is a 2-adjunction

O : LBIon� Topoi : pt.

moreover, the adjunction is idempotent and restrict to a bi-equivelence
between sober bounded ionads and topoi with enough points.

Our geometric picture is completed. We now move to a categorical
understanding of the Scott adjunction.

16 of 21



Thm.
Accω(A,B) is an accessible category with directed colimits. Thus Accω
has an internal hom.

Thm. (DL)

Accω is monoidal closed (⊗,Accω(−,−)) with respect to this internal
hom.

Thm. (DL)
The 2-category of topoi is enriched over the bicategory Accω. Moreover
it has tensors.

A� E := Accω(A, E).

Cor.
As a corollary of the fact that Topoi is tensored over Accω, the Scott
adjunction re-emerges.

Topoi(A� Set,F) ∼= Accω(A,Topoi(Set,F))

Topoi(S(A),F) ∼= Accω(A, pt(F)).
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Now we finally move to logic. Categorical model theory is a subfield of
categorical logic aiming to describe the relevant categorical properties
of the categories of models of some theory. It was extensively
developed by Makkai and Paré in their well known book [80s].

Motto: Categorical model theory ↔ accessible categories

Since then, some hypotheses have very often been added in order to
smooth the theory and obtain the same results of the classical model
theory:

1 amalgamation property;

2 directed colimits;

3 a nice enough fogetful functor U : A → Set;

4 every map is a monomorphism;

5 . . .
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Meanwhile, in a galaxy far far away...

Model theorists (Shelah ’70s) introduced the notion of Abstract
elementary class (AEC), which is how a classical logician approaches to
axiomatic model theory.

Thm. (Rosicky, Beke, Lieberman)
A category A is equivalent to an abstract elementary class iff:

1 it is an accessible category with directed colimits;

2 every map is a monomorphism;

3 it has a structural functor U : A → B, where B is finitely accessible
and U is iso-full, nearly full and preserves directed colimits and
monomorphisms.

Quite not what we were looking for, uh?!
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This looks a bit artificial, unnatural and not elegant.

Our aim
1 Have a conceptual understanding of those accessible categories in
which model theory blooms naturally.

2 When an accessible category with directed colimits admits such a
nice forgetful functor?
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The category of points of a locally decidable topos is an AEC.

Thm. (Henry, DL)
The unit η : A→ ptSA is faithful precisely when A has a faithful functor
into Set preserving directed colimits.

Thm. (Henry)
There is an accessible category with directed colimits which cannot be
axiomatized by a geometric theory.

This problem was originally proposed by Rosicky in his talk “Towards
categorical model theory” at the 2014 category theory conference in
Cambridge: Show that the category of uncountable sets and
monomorphisms between cannot be obtained as the category of point of
a topos. Or give an example of an abstract elementary class that does
not arise as the category points of a topos.
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